Расходомер что это такое

Расходомер воздуха — что это такое? Принцип действия

расходомер что это такое

Жесткие требования стандартов токсичности заставляют производителей оборудовать свои двигатели все новыми системами призванными снизить выброс вредных веществ в атмосферу. Для эффективной работы этих систем им необходимо знать точный состав сгорающей в камере цилиндра смеси, т.е. эта система должна знать, сколько в состав смеси входило топлива и сколько воздуха, только в этом случае вредные вещества будут удалены из выхлопных газов в максимально полном объеме.

Информацию о количестве потребляемого воздуха системе управления двигателем сообщает такое устройство как расходомер. Расходомер может измерять как объем, так и массу попавшего в камеру сгорания воздуха и поэтому различают два способа измерения расхода воздуха:

• Первый способ – механический;
• Второй – тепловой.

В первом случае объем воздуха измеряется в зависимости от перемещения заслонки, а во втором в зависимости от изменения температуры особого элемента. В настоящее время механические расходомеры уже не устанавливаются и потому, перейдем сразу ко второму способу измерений.

Тепловой способ измерения расхода воздуха

Этот способ вытеснил механический благодаря своей совершенности и более точным измерениям массы поступающего воздуха, которую измеряет термоанемометрический расходомер. Эти устройства можно охарактеризовать как быстродействующие, точные и не зависящие от температуры воздух, они в отличие от первого варианта не имеют никаких подвижных частей.

Термоанемометрический расходомер также известен под названием датчик массового расхода и это устройство в настоящий момент используют в системах впрыска как бензиновых, так и дизельных двигателей, включая системы непосредственного впрыска, и работает этот прибор как часть системы управления двигателем. При этом в некоторых системах такой прибор не используется и его функции выполняет датчик, контролирующий давление воздуха во впускном трубопроводе.

Стоит отметить, что расходомер может быть выполнен в двух вариантах и главным их различием является конструкция чувствительного элемента устройства, а это может быть либо проволока, либо пленка.

Проволочный расходомер

Чувствительным элементом проволочного расходомера является платиновая нить, температура которой всегда постоянная, что достигается ее нагревом при помощи электрического тока.

Когда воздух проходит через нить ее температура падает и для повышения этого показателя необходимо увеличить ток, идущий на нагрев нити. При этом специальный преобразователь преобразует ток в выходное напряжение, между величиной которого и массой проходимого воздуха существует определенная зависимость. Именно на основе этих данных блок управления принимает конкретные решения.

Однако со временем нить загрязняется и потому здесь предусмотрен режим самоочистки. Проволока при неработающем двигателе нагревается до температуры в 1000 градусов, благодаря чему и очищается. Недостатком такого расходомера является снижение точности измерений с течением времени. Происходит это из-за того, что нить становится тоньше и уже не обладает начальной точностью показаний.

Этот недостаток был учтен при разработке пленочного расходомера, который и заменил своего предшественника. Работает этот прибор по тому же принципу что и проволочный расходомер и основным его отличием является использование пленки вместо платиновой нити.

Пленочный расходомер и принцип его работы

Чувствительный элемент этого устройства представлен кристаллом кремния, который имеет несколько достаточно тонких слоев платины. Эти слои выступают в качестве резисторов:

• Нагревательного;• Резистора датчика температуры;

• Двух терморезисторов.

Сам чувствительный элемент находится в особом воздушном канале, который насыщается воздухом за счет разряжения. При этом достаточно высокая скорость воздушного потока препятствует загрязнению элемента. К тому же канал сконструирован особым образом, что позволяет более точно определить массу сгоревшего воздуха, благодаря возможности точного измерения массы как прямого, так и отраженного от клапанов воздуха.

Резистор, отвечающий за нагрев, всегда поддерживает постоянную температуру элемента, а разница температур на терморезисторах позволяет определить массу воздуха и направление его движения.

Как правило, такой расходомер выдает аналоговый сигнал в виде напряжения постоянного тока. Хотя некоторые конструкции расходомеров способны выдавать и более точный цифровой сигнал, который является предпочтительным с точки зрения блока управления.

Сигнал, выдаваемый пленочным расходомером, помогает определить:

• Для карбюраторных моделей ДВС – момент впрыска, количество топлива, момент поджигания топливной смеси и алгоритм работы системы улавливания паров.
• Для дизельных моделей – момент впрыска и алгоритм работы системы рециркуляции газов.

Точное знание массы воздуха поступающего в камеру сгорания помогает системе управления рассчитать необходимо количество топлива, что обеспечивает полное сгорание топливной смеси и как следствие минимальное количество вредных веществ в выхлопе.

Другие полезную информацию читайте на страницах нашего сайта www.reno.by

Источник: http://reno.by/stati/191-raskhodomer-vozdukha-chto-eto-takoe-printsip-dejstviya

Измерение расхода жидкости: приборы и методы

расходомер что это такое

Расход – это объем жидкости протекающий в единицу времени через поперечное сечение трубопровода. Измерение расхода жидкости является одной из задач при производственных испытаниях оборудования.

Методы измерения расхода жидкости

Наиболее простые и вместе с тем точные методы измерения расхода жидкости являются объемный и массовый (весовой).

В соответствии с методами измерения, единицами расхода жидкости являются: — для объемного способа: кг/c, кг/ч, г/с

— для массового способа: м3/с, м3/ч и т.д.

При объемном способе измерения протекающая в исследуемом потоке(например, в трубе) жидкость поступает в особый, тщательно протарированный сосуд (так называемый мерник), время наполнения которого точно фиксируется по секундомеру.

Если известен объем мерника – V и измеренное время его наполнения – T, то объемный расход будет

Q = V / T.

При весовом способе взвешиванием находят вес Gv = mv*g (где g – ускорение свободного падения) всей жидкости, поступившей в мерник за время T. Затем определяют её массу

mv = Gv /g

и массовый расход

m = mv / T

и по ней, зная плотность жидкости (ρ), вычисляют объемный расход

Q = m / ρ

Но объемный и весовой методы измерения расхода жидкости пригодны только при сравнительно небольших значениях расхода жидкости, так как в противном случае размеры мерников получаются довольно громоздкими и, как следствие, замеры очень затруднительными.

Кроме того, этими способами невозможно измерить расход в произвольном сечении, например, длинного трубопровода или канала без нарушения их целостности. Поэтому, за исключением случаев измерения сравнительно небольших расходов жидкостей в коротких трубах и каналах, объемный и весовой способы, как правило, не применяются, а на практике пользуются специальными приборами, которые предварительно тарируются объемным или весовым способом.

Приборы для измерения расхода жидкости

Трубчатые расходомеры

Одним из таких приборов является трубчатый расходомер или расходомер Вентури. Большим достоинством этого расходомера является простота конструкции и отсутствие в нем каких-либо движущихся частей. Трубчатые расходомеры могут быть горизонтальными и вертикальными. Рассмотрим, к примеру, горизонтальный вариант.

Расходомер состоит из двух цилиндрических труб А и В диаметра d1, соединенных при помощи двух конических участков (патрубков) С и D с цилиндрической вставкой E меньшего диаметра d2. В сечениях 1-1 и 2-2 расходомера присоединены пьезометрические трубки a и b, разность уровней жидкости h в которых показывает разность давлений в этих сечениях.

Расход жидкости в этом случае определяется по тарировочным кривым, полученным опытным путем и дающим для данного расходомера прямую зависимость между показаниями манометра и измеряемыми расходами жидкости. Пример такой кривой на картинке рядом

Расходомерная шайба

Другим широко распространенным прибором для измерения расхода является расходомерная шайба (или диафрагма), обычно выполняемая в виде плоского кольца с круглым отверстием в центре, устанавливаемого между фланцами трубопровода

Края отверстия чаще всего имеют острые входные кромки под углом 45° или закругляются по форме втекающей в отверстие струи жидкости (сопло). Два пьезометра a и b (или дифференциальный манометр) служат для измерения перепада давления до и после диафрагмы.В основе метода положен принцип неразрывности Бернулли.

Расход в этом случае определяется по замеренной разности уровней в трубках. Трубки подсоединяют к датчикам, замеряющим перепад давления. Датчик перепада давления преобразует перепад в электрический сигнал, который отправляется на компьютер.

Крыльчатый расходомер

Расходы могут быть вычислены также в результате измерения скоростей течения жидкости и живых течений потока.

Одним из широко распространенных приборов, применяемых для этой цели является гидрометрическая вертушка. Современный турбинный расходомер устанавливают только на горизонтальном участке трубопровода. Лопасти крыльчатки колеса турбины изготавливают из не магнитного материала.

Вертушка состоит из крыльчатки А, представляющей собой колесо с винтовыми лопастями, насаженное на горизонтальный вал С. Когда она установлена в потоке, крыльчатка под действием протекающей жидкости вращается, причем число её оборотов прямо пропорционально скорости течения. Число импульсов за один оборот крыльчатки равно числу лопастей, а значит частота импульсов пропорциональна расходу.

При вращении лопасти поочередно пересекают магнитное поле, которое наводит электродвижущую силу в катушке в виде импульса. От вертушки вверх выводятся провода В, подающему сигнал к специальному счетчику, автоматически записывающему число оборотов и время.

Приборы для измерения расхода жидкости в этом случае называют турбинными расходомерами

Ультразвуковой метод измерения расхода

Ультразвуковой расходомер работает по принципу использования разницы по времени прохождения ультразвукового сигнала в направлении потока и против него.

Расходомер формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д.

Такой контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды.

Аналогично электронное устройство подает импульсы в обратном направлении, т.е. от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется своей частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды.

Следующим шагом является определение разности Δf указанных частот, которая пропорциональна расходу среды. Приборы для измерения расхода жидкости называются ультразвуковые расходомеры.

Вихревой метод измерения расхода

В основу работы вихревых расходомеров положена зависимость между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа.

Принцип действия преобразователя основан на ультразвуковом детектировании вихрей, образующихся в потоке жидкости, при обтекании жидкостью специальной призмы, расположенной поперек потока.

В зависимости от конструкции датчика чувствительные тепловые элементы устанавливаются непосредственно в теле датчика или вихревой дорожке.

Если в тело образующее вихри, установить магнит, то он может служить датчиком. Реакция, возникающая при срыве вихрей, заставляет помещённый в поток цилиндр колебаться с частотой вихреобразования.

Достоинством вихревых расходомеров является, обеспечение низкой зависимости качества измерений от физико-химических свойств жидкости, состояния трубопровода, распределения скоростей по сечению потока и от точности монтажа первичных преобразователей на трубопроводе.

Приборы для измерения расхода жидкости называются вихревые расходомеры.

о измерении расхода

При проведении измерения расхода, в некоторых случая используется понятие количества вещества – это количество жидкости или другой среды, проходящей через поперечное сечение трубопровода в течении определенного промежутка времени(за час, месяц, рабочую смену и т.д.)

ЭТО ИНТЕРЕСНО:  Исмп что это такое в медицине

Приборы для измерения количества вещества по аналогии с измерением расхода монтируются на – на трубопроводе, с выводом вторичного прибора к оператору.

Загружаем интересные статьи

Источник: https://www.nektonnasos.ru/article/gidravlika/izmerenie-raskhoda-zhidkosti/

Типы средств измерения расхода жидкости

расходомер что это такое

В расходомерах такого типа используют зависимость перепада давления от расхода вещества. Расходомеры переменного давления делятся на:

  • центробежные;
  • ударно-струйные;
  • расходомеры с сужающим устройством;
  • расходомеры с гидравлическим сопротивлением;
  • расходомеры с напорным устройством.

Самым простым и популярным прибором для измерения расхода такого типа является расходомер с диафрагмой, т.е. сужающим устройством потока жидкости.

В трубе ставят сужающее устройство и измеряется разность давления перед диафрагмой и в её отверстии. По разнице давлений рассчитывается расход вещества. Такой тип датчиков прост в изготовлении и может применяться почти для любых видов жидкостей. Но данный метод измерения расхода с трудом применим в системах с малым расходом, в пульсирующих потоках, а также в веществах, меняющих свое состояние.

Расходомеры постоянного перепада давления

Расходомеры постоянного перепада давления также известны как расходомеры обтекания. Принцип действия таких расходомеров основан на реакции чувствительного элемента на напор. Ярким примером является ротаметр. Ротаметр имеет форму вертикальной конической трубы, в которой находится поплавок специальной формы. Вещество движется вверх по трубе и поднимает поплавок, пока силы, поднимающие поплавок, и сила гравитации не равновесятся.

Оптические расходомеры

Оптические расходомеры измеряют расход вещества, используя зависимость оптических эффектов от скорости движения вещества.

Такие расходомеры используют эффект Физо-Френеля. С помощью этого эффекта определяют зависимость скорости света в движущейся среде и скорость движения среды. Оптические расходомеры применяют в агрессивных средах и в условиях высоких и низких температур. 

Акустические расходомеры

Принцип действия акустических расходомеров основан на измерении эффекта, возникающего при прохождении акустических колебаний через вещество. Акустические расходомеры называют ультрозвуковыми, потому что большинство из них работает в ультразвуковом диапазоне.

К ультразвуковым расходомерам относятся:

  • ультразвуковые время-импульсные;
  • ультразвуковые фазового сдвига;
  • ультразвуковые доплеровские;
  • ультразвуковые корреляционные.

Наибольшее применение получили ультразвуковые расходомеры, которые измеряют разность времени прохождения колебаний по потоку и против него. На таком принципе основан датчик Dynasonics TFXL.

Ультразвуковые расходомеры могут применяться в агрессивных средах, в диэлектрических средах и в трубах почти любого диаметра. Точность измерения таких расходомеров высокая в широком диапазоне.

Ультразвуковые расходомеры чаще применяют как прибор для измерения расхода и количества жидкости, так как газ имеет малое акустическое сопротивление и в нем труднее получить акустические колебания.

Также ультразвуковые датчики сильно зависят от степени загрязненности вещества. Длина волны должна быть на порядок больше диаметра твердых частиц.

Электромагнитные расходомеры

Принцип действия электромагнитных расходомеров основан на законе Фарадея. Поток жидкости помещают между полюсами магнита и замеряют ЭДС. Применяют как постоянные магниты, так и электромагниты, питаемые переменным током. Труба в зоне установки расходомера должна быть выполнена из непроводящего немагнитного материала.

Электромагнитные расходомеры применяют в различных областях, в том числе в медицине, биохимической и пищевой промышленности, так как они малоинертны, устанавливаются снаружи трубопровода, позволяют измерять очень малые расходы. К недостаткам электромагнитных расходомеров можно отнести следующие: они не могут применяться для измерения расхода веществ с малой электропроводностью, расходомеры чувствительны к неоднородностям, турбулентностям, паразитным токам заземления.

Расходомеры могут забивать трубы металлическим мусором.

Кориолисовые или массовые расходомеры

Данный вид приборов использует эффект Кориолиса для измерения массового расхода. Принцип действия расходомера основан на измерении разницы фаз колебаний на входе и на выходе измерительных трубок. Рассмотрим как это работает на примере расходомера RCT 1000. Катушка возбуждения создает колебания в расходомерной трубе.

Когда жидкости нет, колебания на измерительных катушках совпадают по фазе. Но при наличии потока начинает действовать сила Кориолиса, из-за которой колебания на входе и на выходе начинают отличаться. Зная разность фаз колебаний, расходомер определяет массовый расход. Плотность жидкости определяется по периоду колебаний.

Вихревые расходомеры

Вихревые расходомеры используют эффект вихревой дорожки Кармана для измерения расхода. За телом обтекания в потоке образуется система вихрей. Частота вихрей пропорциональна скорости потока. Пульсации давления, возникающие в потоке вихрей за телом обтекания, регистрируются датчиками. Такой тип расходомеров обеспечивает низкую относительную погрешность +(0,2-1,5)% в широком динамическом диапазоне.

Тепловые расходомеры

Тепловые расходомеры основаны на измерении скорости потока по эффекту теплового нагрева потока или тела в потоке. Тепловые расходомеры делятся на следующие виды: калориметрические, термоконвективные и термоанемоментрические.

Источник: https://RusAutomation.ru/stati/tipy-sredstv-izmereniya-rashoda-zhidkosti

Что такое расходомер?

| Статьи о трубопроводной арматуре | Что такое расходомер?

Одним из важных условий правильного ведения любого хозяйства является тщательный учет расходуемых во время конкретной деятельности материалов, веществ и так далее.

Особенно это касается коммунальной сферы, которая в нынешнее кризисное время требует от каждого россиянина достаточно большую часть доходов. Одной из статей коммунальных услуг является пользование системой водоснабжения, которая также требует оплаты.

Именно поэтому для контроля и возможности экономии личных средств желательна установка в каждой квартире или доме так называемого расходомера, или счетчика потребляемой жидкости.

Любой расходомер является устройством учета и измерения объема газа или жидкости, прошедшего через прибор. В быту этот прибор принято упрощенно называть счетчик, хотя это и не совсем верно.

Любой расходомер монтируется непосредственно на магистрали, по которой проходит газ или жидкость, или же около нее. На данный момент существует несколько основных видов расходомеров, отличающихся принципом своей работы.

Подробнее остановимся на индукционном, весовом, механическом, турбинном и ультразвуковом расходомерах.

Турбинные расходомеры

Такие приборы предназначены в основном для измерения количества химически неактивных жидкостей, для которых характерна низкая вязкость, а также газов. В принципе работы лежит объемный измерительный прибор.

Жидкость или газ, проходя через механизм, вращает лопасти турбины. Частота вращений этих лопастей обрабатывается механически или электроникой, и в результате мы получаем значения объема в числовом выражении на шкале прибора.

Классическим примером такого расходомера является обычный бытовой счетчик воды.

Механический расходомер

Принцип работы основан на колебаниях поршня внутри корпуса, через который проходит измеряемая жидкость или газ. По причине относительно больших размеров, такие приборы учета в основном используются в заводских условиях, а также там, где необходимо измерить расход вязких жидкостей. Также, подобные расходомеры способны работать при экстремальных температурах, без ущерба для точности.

Принцип работы такого прибора основан на том, что измеряемая жидкость, после полного вытеснения воздуха из трубопровода, начинает двигать поршень, а сдвинув его – уходит в выходное отверстие, и дальше в трубу. При этом зазор между поршнем и корпусом прибора настолько мал, что объемом жидкости, которая прошла в обход поршня обычно пренебрегают.

Каждый такой ход поршня соответствует определенному установленному объему, и благодаря зубчатой передаче, движения поршня транслируются на стрелочный указатель, который и показывает объем протекшей жидкости.

Весовой расходомер

Данный вид расходомера измеряет объем жидкости или газа любой плотности, а также абсолютно любой проводимости.

Принцип работы данного вида счетчиков состоит в наличии двух трубок одинакового диаметра, изогнутых в форме греческой буквы «омега», которые колеблются в противоположных направлениях.

Когда измеряемая субстанция проходит сквозь сечение, на трубку действует сила Кориолиса, которая в свою очередь деформирует саму трубку. Вот эта самое изменение формы трубки и является функцией величины расхода. Остается только обработать эти данные, и мы получаем числовое значение расхода.

Индукционный расходомер

Подобный тип счетчика является идеальным прибором для измерения объема любой жидкости, которые проводят ток. Является одним из самых точных измерительных приборов для учета расхода. Минимальный порог проводимости для измеряемой жидкости должен составлять 5 µS/см. Все остальные физические свойства измеряемого вещества, такие как температура, давление и плотность, не имеют значения.

Это делает индукционные измерители одними из самых точных приборов для этих целей. В принцип измерения объема заложен закон Фарадея про индукцию напряжения в проводнике, который двигается. Этот закон говорит, что при движении проводника в магнитном поле, в нем возникает электрическое напряжение, значение которого прямо зависит от средней скорости, с которой этот проводник двигается.

В подобных приборах проводником является сама жидкость, вокруг которой создается искусственное магнитное поле. Из-за движения потока жидкости, в нем возникает напряжение, которое считывается при помощи нескольких электродов. Величина этого электрического напряжения будет в прямой пропорции к средней скорости движения жидкости через расходомер.

Зная сечение трубы, и скорость потока в ней, расход вычисляется при помощи элементарной формулы, а результат выводиться на табло прибора.

Ультразвуковые расходомеры

Подобный тип приборов используется для измерения расхода в заполненных трубах, а также закрытых и открыты каналах подачи жидкости. Главной особенностью этих устройств является получение данных исходя из разности времени, необходимого для прохождения сигнала.

Ультразвуковой сигнал подается и в сторону направления движения потока, и в обратную сторону. Разность времени прохождения этих двух сигналов дает возможность узнать скорость, с которой двигается измеряемая среда.

Остается лишь преобразовать эти данные в номинальные значения, чтобы отразить их на шкале измерения расхода.

Предлагаем Вашему вниманию следующие расходомеры:

Источник: http://proarma.ru/chto-takoye-raskhodomer

Расходомер жидкости, газа и пара: подробно простым языком

Расходомер — это специальное устройство для измерения расхода жидкости, газа и пара в промышленных системах. Расход является важным показатель в ходе многих промышленно-технологических процессов.

В круг обязанностей киповцев обычно входят работы по установке, калибровке и ремонту расходомеров на своих объектах. Для того, чтобы эффективно и четко выполнять такие задания, киповцам необходимо уметь разбираться в различных типах расходомеров и понимать, как с помощью расходомеров измеряется расход жидкости, газа и пара.

Расходомер фирмы ABB Рекомендуем разобраться с тем, что такое объемный расход и изучить каталог приборов для измерения расхода.

Принцип работы расходомера

В классификации расходомеров существуют две большие группы, на которые они подразделяются: это расходомеры, которые измеряют непосредственно расход (расходомеры с непосредственным отсчетом) и те, которые измеряют расход с помощью преобразования (расходомеры непрямого действия).

Расходомеры с непосредственным отсчетом

Расходомеры с непосредственным отсчетом обычно используются для измерения и получения показаний параметра общего расхода. В расходомере с непосредственным отсчетом измерения среды разделяются на определенные физические количественные величины.

Общее число количественных величин жидкости, газа или пара, которые отсчитывает расходомер, равен общему расходу жидкости, газа или пара через данный прибор.

После того, как прибор учел каждую количественную величину жидкости, газа или пара, эта порция жидкости, газа или пара покидает прибор.

Расходомер с непосредственным отсчетом

Расходомеры непрямого действия

Расходомеры непрямого действия обычно используются для измерения и получения показаний технологического параметра расхода потока. Он не измеряет расход жидкости, газа или пара в процессе непосредственного отсчета. Вместо этого, он измеряет некоторые физические параметры или технологические величины, такие как: скорость, давление или уровень. Затем прибор преобразует полученные данные в показание расхода потока.

Расходомер непрямого действия

Источник: https://www.kipiavp.ru/pribori/rashodomeri-voda-gaz-par.html

Принцип работы расходомера, из чего состоят счетчики воды

Выбор способа учета расхода жидкости в крупных организациях-потребителях воды, на предприятиях, использующих воду на технологические нужды и сбрасывающих стоки, на ТЭЦ и других промышленных объектах зависит от многих факторов. Это степень загрязнения потока, тип системы (напорная или безнапорная), место планируемой установки и др.

ЭТО ИНТЕРЕСНО:  Как работает печка в автомобиле

Основные типы расходомеров

Рассматривая основные конструкции счетчиков по принципу их устройства и работы можно выделить такие виды расходомеров:

  1. Тахометрические. Они состоят корпуса с установленной в нем лопастной крыльчаткой, которая вращается за счет перемещения воды и передает количество сделанных оборотов на считывающее устройство. Учитывая их простоту и дешевизну, именно такие счетчики используются в качестве бытовых водомеров на малых диаметрах напорных трубопроводов. В промышленном учете, где оперируют большими расходами, они не применяются из-за громоздкости и металлоемкости, а также создания гидравлического сопротивления для движения потока и возможных механических поломок.
  2. Электромагнитные полнопроходные. Это высокоточные приборы объемного учета расхода жидкости, используемые в трубопроводных системах с избыточным давлением жидкости.
  3. Штанговые электромагнитные. С их помощью выполняется замер скорости в середине потока в закрытых полностью заполненных трубах (под давлением). Используются для различных диаметров.
  4. Ультразвуковые. Различают водомеры, работающие по время-импульсному методу измерения, методу Доплера и кросс-корреляционные. Сигнал на считывающее устройство передается с ультразвуковых датчиков. Это одни из наиболее широко применяемых промышленных счетчиков. В зависимости от применяемых датчиков используются в напорных и самотечных системах.
  5. Радарные и лазерные системы измерения расходов. Бесконтактные устройства, применяемые в промышленности. Применяются для самотечных потоков.
  6. Счетчики на основе уровнемера. Их используют в безнапорных системах на лотках Вентури или Паршаля, на каналах с малым водопотреблением либо для технологического учета. При помощи беспроводных уровнемеров можно получить данные об удаленных и труднодоступных объектах.
  • Промышленные водяные счетчики

Рассмотрим более подробно устройство и принцип действия основных расходомеров, применяемых для промышленного учета.

Время-импульсные ультразвуковые счетчики

Время-импульсный метод (или, по-другому, фазового сдвига) основан на измерении времени прохода сигнала против движения потока и по направлению перемещения жидкости. Для преобразования ультразвукового сигнала на трубопроводе устанавливают два или четыре смещенных вдоль движения воды пьезоэлемента. Как правило, применяются дисковые элементы, реже – кольцевые (на малых диаметрах).

Пьезоэлементы могут устанавливаться внутри потока (на внутренних стенках трубы или канала) или снаружи трубопровода (в этом случае сигнал проходит через наружную стенку). В зависимости от применяемых датчиков счётчики могут устанавливаться в самотечных системах (как открытых, так и закрытых), а также в полностью закрытых трубопроводах с избыточным давлением среды. Различают такие виды датчиков скорости:

  • трубные – врезаются в водопровод с внешней стороны. Могут применяться в напорной и безнапорной среде;
  • клиновидные – устанавливаются на дне или внутренней стенке трубы. Как правило, используются в безнапорных каналах либо в трубопроводах больших диаметров, если установка и обслуживание датчика снаружи неудобна;
  • сферические или полусферические – монтируются на наклонных стенках открытых трапециевидных каналов;
  • штанговые – имеют вид трубок, устанавливаются на вертикальных стенках каналов;
  • накладные – бесконтактные датчики, ставятся на внешнюю поверхность трубопровода.

В зависимости от способа установки датчиков различают контактные и бесконтактные устройства. Преимущество бесконтактных переносных расходомеров в возможности устанавливать их на трубопроводы без нарушения целостности. Они достаточно редко устанавливаются стационарно, чаще используются для поверочных замеров в разных точках.

Время-импульсные расходомеры пригодны для нахождения расхода чистой воды или немного загрязненной (с незначительным включением взвешенных частиц). Их применяют в водоснабжении и водоотведении, в охлаждающих контурах, в ирригационных схемах орошения, на насосных напорных станциях, в открытых природных и искусственных каналах и реках. Применяются как для коммерческого, так и для технологического учета.

Метод Доплера

Счетчики, работающие по данному методу, измеряют разность длины волны, отраженной от движущегося потока, относительно длины волны излучаемого сигнала. Измерение принимаемого и передаваемого сигнала для определения разницы между ними производится при помощи клиновидных или трубных датчиков скорости, устанавливаемых на дне канала или трубы.

Работающие по эффекту Доплера водомеры используют в напорных и самотечных системах, полностью и частично заполненных трубах, открытых каналах. Они работают в потоках разной степени загрязнения (кроме чистой воды). Доплеровские расходомеры используют для коммерческого учета в трубопроводах и самотечных каналах, для измерения расходов в реках и каналах ирригационных систем, в ливневых канализациях, на насосных станциях, трубопроводах водозабора и сброса стоков в водоемы.

Кросс-корреляционные ультразвуковые счетчики

Такие расходомеры работают по методу кросс-корреляции ультразвукового сигнала. Эта методика основана на принципе построения скоростей по различным уровням потока, счетчик дает возможность строить реальную диаграмму распределения скоростей в потоке. Также выполняется замер уровня потока.

С водомерами используются ультразвуковые трубные и клиновидные датчики скорости, устанавливаемые в потоке, уровень жидкости определяется при помощи надводных и подводных датчиков. Возможно исполнение комбинированных датчиков скорости и уровня.

Счетчики используются в напорных и самотечных, открытых и закрытых системах. Это точный метод измерения, дающий достоверные результаты для потоков различной степени загрязненности, в том числе он эффективен в неоднородных средах. Расходомеры используют в технологических трубопроводах, на очистных сооружениях, в реках и водоемах и др. В крупных каналах можно устанавливать несколько датчиков по всей ширине для получения более точных результатов.

Радарные и лазерные расходомеры

Бесконтактные узлы учета замеряют поверхностную скорость движения потока в открытых и закрытых самотечных потоках. Вычисление объемного расхода производится путем вычисления его через скорость на поверхности.

Такие устройства используют в труднодоступных местах и сильно загрязненных потоках, где нет возможности установить погружные датчики. Их применяют для учета канализационных и технических стоков.

Источник: https://vistaros.ru/stati/rashodomeryi/rashodomery-vidy-i-printsip-dejstviya.html

Измерение расхода

Расход – это продукт или сырье проходящий через поперечное сечение трубопровода в единицу времени.

Существуют два вида расхода – объемный (Qv) и массовый (Qm). Они рассчитываются по формулам:

где α – расчетный коэффициент расхода;

К²t – температурный коэффициент (коэффициент расширения), эта величина выбирается из справочника;

ρ — плотность продукта или сырья;

d20 – диаметр сужающего устройства при температуре t = 20˚С;

∆Р – перепад давления на сужающем устройстве.

Из этих формул видно, что разница между объемным и массовым расходом заключается в подкоренном выражении, т.е. в одном случае под корнем перепад давления ∆Р делится на плотность ρ, а в другом случае эти две величины перемножаются.

Единицы измерения объемного расхода: м3/ч; м3/с.

Единицы измерения массового расхода: кг/ч; кг/с; т/ч; т/с.

При измерении расхода существует такое понятие, как »Количество вещества». Количество вещества – это продукт или сырье, проходящее через поперечное сечение трубопровода за промежуток времени (смену, вахту, час, месяц и т.д.).

Количество вещества измеряется счетчиками, которые устанавливаются:

1. По месту (в трубопроводе);

2. В операторной (вторичный прибор).

Количество вещества – выражают в единицах объема (м3) или массы (кг).

Существует несколько методов измерения расхода:

1. Расходомеры постоянного перепада давления.

2. Расходомеры переменного перепада давления.

3. Электромагнитные расходомеры.

4. Турбинные расходомеры.

5. Акустические расходомеры.

6. Приборы измеряющие расход по эффекту »Кориолисовых сил».

7. Тепловые расходомеры.

8. Вихревые расходомеры.

Метод постоянного перепада давления

Ротаметр – расходомеры обтекания. Ротаметры устанавливают в вертикальный участок трубопровода. Он представляет собой стеклянную трубку в форме конуса, обращенную широким концом вверх, внутри которой находится поплавок. Наибольшее давление будет в кольцевом зазоре между поплавком и стенками сосуда, а наименьшее сверху.

Поплавок имеет:

а) нижнюю коническую часть;        

б) среднюю цилиндрическую часть;         

в) верхнюю со скошенными бортиками, косые линии предназначены для предания поплавку устойчивости.

В зависимости от пределов измерения поплавок изготовляют из: эбонита, дюралюминия или нержавеющей стали. Шкала нанесена непосредственно на стеклянной трубке.

Преимущества ротаметров:

1. Простота конструкции

2. Возможность измерения малых расходов

3. Значительный диапазон измерения

4. Возможность измерения агрессивных сред

5. Равномерная шкала.

Существуют ротаметры с электрической дистанционной передачей показаний. Они являются бесшкальными датчиками. Ротаметры типа РЭ (ротаметр электрический) – могут использоваться при t˚С от -40˚С до 0˚С.

Используются для измерения расхода неагрессивных жидкостей.

Метод переменного перепада давления

Для того, чтобы создать перепад давлений в трубопроводе, устанавливают сужающее устройство. На нашем предприятии в качестве сужающего устройства применяют диафрагмы. Конструктивно диафрагма представляет из себя диск с отверстием, который вставляется в трубопровод.

Р1 – самое большое давление перед диафрагмой;

Р2, Р3 – промежуток, в котором будет самое маленькое давление;

Р4 – самое большое давление после диафрагмы;

Рn – давление потерь (это и есть перепад давлений между Р и Р4, для которого устанавливается сужающее устройство).

Перепад давления обозначается ∆Р и находится по формуле:

∆Р = Р – Р2

Перед диафрагмой давление измеряемой среды возрастает, а скорость ее перемещения по трубопроводу снижается. После диафрагмы давление измеряемой среды снижается, а скорость ее перемещения возрастает.

Отбор давления производится рядом с сужающим устройством.

Перепад давления ∆Р на сужающем устройстве является мерой расхода. Из формулы определения расхода видно, что они связаны между собой зависимостью через корень квадратный, поэтому на выходе из дифманометра сигнал имеет форму параболы.

Таким образом, если не предусмотреть дополнительного устройства на выходе из дифманометра, то шкала вторичного прибора по всей длине будет неравномерной, но особенно это просматривается в нижней части шкалы.

Для того, чтобы преобразовать нелинейную зависимость в линейную и чтобы шкала была равномерной устанавливают приборы извлечения квадратного корня. Во многих электронных вторичных приборах эти преобразователи устанавливаются программно, т.е. устанавливаются при программировании контроллера.

Существует несколько видов сужающих устройств:

1. Диафрагмы – они подразделяются на стандартные и нестандартные.

Стандартные диафрагмы устанавливаются в трубопроводах таким образом, чтобы скосы были на выходе.

К нестандартным диафрагмам относятся:

а) Конические;

б) Секторные.

Конические диафрагмы применяют для измерения расхода запыленных, загрязненных и очень вязких сред. Их устанавливают в трубопроводе таким образом, чтобы скоси были на входе.

Секторные диафрагмы применяют для измерения сыпучих материалов.

2. Сопло Вентури.

3. Труба Вентури.

4. Дроссель (переменный, постоянный).

Сужающие устройства соединяются с дифманометрами соединительными импульсными проводками, а те в свою очередь преобразуют перепад давления в унифицированный пневматический или электрический сигнал. Этот сигнал передается на вторичный прибор, а затем, если имеется компьютер, на монитор.

Электромагнитные расходомеры.

Электромагнитные расходомеры применяют для измерения расхода электропроводящих жидкостей.

Расходомер представляет собой отрезок трубы из нержавеющей стали, с расположенными снаружи полюсами электромагнита. По оси в трубопроводе расположены токосъемные электроды. Участок трубопровода по обе стороны от электродов покрыт электроизоляцией.

Роль проводника в таком расходомере выполняет электропроводная жидкость, перемещающаяся по трубопроводу и пересекающая магнитное поле электромагнита. В жидкости будет наводиться ЭДС (электродвижущая сила, т.е. напряжение) пропорциональная скорости ее движения, т.е. расходу жидкости.

Степень агрессивности для таких приборов определяется материалом изоляции трубы и электродов первичного преобразователя.

Турбинные расходомеры.

Турбоквант предназначен для измерения объемного и массового расхода различных жидкостей и газов. Также этот прибор осуществляет суммирование расхода, выдает количество вещества.

Турбинка устанавливается только в горизонтальных трубопроводах. Поток измеряемой среды проходит через турбинку и приводит во вращение ее лопасти. Число оборотов крыльчатки пропорционально расходу. На турбинке установлен преобразователь, который состоит из катушки с магнитным сердечником.

Лопасти крыльчатки выполнены из ферромагнитного сплава (т.е. из не магнитящегося материала). При вращении они поочередно пересекают магнитное поле, которое наводит магнит и в катушке наводится ЭДС в виде импульса, причем число импульсов за один оборот крыльчатки будет равно числу лопастей. Таким образом, частота импульсов пропорциональна расходу. Этот выходной сигнал от турбинки по кабелю поступает на частотомер, т.е. на Турбоквант.

ЭТО ИНТЕРЕСНО:  Аэрограф что это такое

Ультразвуковые расходомеры.

Принцип действия ультразвуковых расходомеров основан на пьезоэлектрическом эффекте, т.е это фактическая скорость распространения ультразвуков в движущейся среде, которая равна геометрической сумме скорости движения среды и скорости звука в этой среде.

Ультразвуковой расходомер представляет собой отрезок трубы, в который установлены излучатель ультразвука и его приемник. Время, за которое сигнал проходит от излучателя к приемнику преобразуется в величину расхода.

Расходомеры по эффекту »Кориолисовых сил»

Принцип работы основан на использовании эффекта Кориолисовых сил.

Конструкция расходомера TRIO-MASS выполнена с использованием двух параллельных труб, что позволяет уменьшить габаритные размеры, увеличить жесткость конструкции и выпускать расходомеры в широком диапазоне диаметров.

 Использование в конструкции TRU-MASS однотрубной спирали дает возможность предлагать широкий диапазон вариантов соединения с трубопроводом.

При прохождении массовым потоком трубы, к которой приложены принудительные колебания, Кориолисовы силы вызывают крутящий момент в сечении трубы. Труба расходомера постоянно вибрирует со своей резонансной частотой, которая является функцией массы измерительной системы, составленной из массы трубы и протекающей рабочей жидкости.

Как только резонансная частота колебаний начинает изменяться, как результат изменения плотности рабочей жидкости автоматически производится изменение частоты возбуждения внешним источником вибраций. Это позволяет одновременно с измерениями расхода проводить измерения плотности рабочей жидкости. Встроенный температурный датчик позволяет производить эти измерения с поправкой на температуру.

Типы расходомеров: преимущества и недостатки

Расходомер представляет собой прибор для измерения количества израсходованного (пройденного через трубопровод) рабочего вещества, жидкости или газа. Поскольку сжимаемые и несжимаемые вещества имеют свою специфику измерения, то и устройства в этом сегменте различаются по принципам действия. Каждая категория рассчитана на работу в среде с определенными эксплуатационными характеристиками, отличается особыми параметрами, имеет свои преимущества и недостатки.

 Преимущества электромагнитных расходомеров

  • В поперечном сечении нет движущихся и неподвижных деталей, что позволяет сохранить скорость транспортировки жидкости.
  • Измерения можно производить в большом динамическом диапазоне.

Недостатки

  • Если в жидкости будут магнитные и токопроводящие осадки, загрязнения, то прибор будет работать с искажениями.

Достоинства ультразвуковых расходомеров

  • Устойчивость к вибрациям и ударам.
  • Стабильный долговечный корпус.
  • Подходят для нефтеперерабатывающей промышленности и систем охлаждения.
  • Выполняют замеры расхода воды и жидкостей, подобных воде по физическим свойствам.
  • Работают в среднем динамическом диапазоне измерений.
  • Могут монтироваться на трубопроводы больших диаметров.

Тахометрические расходомеры

В расходомерах тахометрического типа основным измерительным элементом служит крыльчатка или турбина (располагаются перпендикулярно или параллельно проходящему потоку соответственно). В процессе замеряются скорость вращения и количество оборотов, сделанных в потоке.

Преимущества

  • Подходят для измерения расхода жидкости, пара и газа.
  • Простые и дешевые модели.
  • Легко монтируются на трубопроводы малых диаметров и часто используются в бытовых условиях.
  • Работают без источника питания, электроподключение не требуется.

Кориолисовы расходомеры

В основе действия – эффект Кориолиса: U-образные трубки подвергаются колебаниям при движении, а вибрационные колебания, в свою очередь, вызывают закручивание вещества. Величина сдвига фаз зависит от массового расхода жидкости или пара. Расход измеряется с учетом образуемого угла закручивания. Чаще всего такие расходомеры применяются для жидкостных сред, в том числе для красок, лаков, жидких полимеров.

Расходомеры перепада давления

В основе принципа действия таких приборов – измерение перепада давления, возникающего в момент прохождения жидкостного или газового потока через сужающееся приспособления (шайбу, сопло). В этом месте меняется скорость потока, а давление возрастает. Замеры в точке прохождения препятствия производятся с использованием дифференциального датчика давления.

Виды, устройство и принцип действия расходомеров

Перейти к выбору и покупке расходомеров

Расходомер, как видно из названия — устройство, предназначенное для измерения расхода какого-либо вещества — как правило, жидкости или газа. Если имеется канал диаметром d и по нему со средней скоростью Va перемещается жидкость или газ, то расходом является величина:

где A=πd2/4 — площадь поперечного сечения канала.

Следует сразу отметить, что вещества, расход которых необходимо измерить, могут быть сжимаемыми (газ) или несжимаемыми (жидкость), и методики измерения расхода в обоих случаях имеют свои особенности.

Независимо от типа используемого устройства определения расхода вещества является довольно сложной комплексной задачей, при решении которой приходится учитывать множество факторов, таких как:

  1. Физические характеристики исследуемой среды
  2. Физические характеристики окружающей среды
  3. Форма канала и свойства материала, из которого он изготовлен

К каждому датчику как правило прилагается набор документов описывающих технические параметры прибора, его ограничения и рекомендации по эксплуатации. Перед покупкой изучите все эти документы и выберете наиболее подходящее для ваших задач устройство.

Среди довольно большого разнообразия расходомеров по принципу действия можно выделить следующие основные группы:

  • Датчики скорости потока по перепаду давления
  • Тепловые расходомеры
  • Ультразвуковые расходомеры
  • Электромагнитные расходомеры
  • Микрорасходомеры
  • Кориолисовские расходомеры
  • Расходомеры с мишенями
  • Детекторы изменения скорости потока

Рассмотрим основные виды расходомеров.

Вихревые расходомеры (Расходомеры с мишенями)

В расходомерах данного типа основным элементом является дискообразная или шарообразная мишень, укреплённая на эластичном тросе, один противоположный конец которого неподвижно закреплён (рисунок 5). Поток жидкости или газа приводит к смещению мишени, что вызывает деформацию троса, а установленные на нём тензодатчики регистрируют тип и степень деформации. Полученные данные позволяют судить о скорости потока вещества, а также о его направлении.

Рисунок 5. Схема расположения ключевых элементов вихревого расходомера

Достоинством таких датчиков является возможность проведения измерений расхода и скорости потока в двух или даже в трёх различных направлениях. Для обеспечения подобной многозадачности необходимо обеспечить симметричность мишени для всех нужных направлений.

Кориолисовские расходомеры

Обычно кориолисовский расходомер состоит из трубки, которая подвергается вибрационному воздействию от внешнего генератора колебаний (рисунок 6). Если трубка пуста, колебания приведут к синхронному ускорению всех участков трубки.

Если же по трубке перемещается жидкость, на неё из-за воздействия ускорения, вызванного колебательным воздействием, будет также действовать кориолисова сила, направленная в различные стороны для входного и выходного потоков жидкости, что приведёт к сдвигу фазы колебаний трубки.

Величина фазового рассогласования зависит от массы жидкости, протекающей по трубке в единицу времени.

Рисунок 6. Схема функционирования кориолисовского расходомера

Главным достоинством устройств данного типа является их универсальность — они могут применяться для определения скорости потока большого спектра веществ — как жидкостей, так и газов. Основным же недостатком кориолисовских расходомеров является их относительно высокая стоимость.

Микрорасходомеры

Этот класс представлен расходомерами теплового или емкостного принципа действия в миниатюрном исполнении. Требования к габаритам обусловлены областью применения подобных устройств — это, как правило, химическое производство или медицинские технологии. По принципу действия микрорасходомеры полностью идентичны своим крупногабаритным аналогам, однако стоимость миниатюрных устройств, как правило, гораздо выше.

Расходомеры по перепаду давления

Для понимания принципа функционирования данного типа расходомеров проще всего прибегнуть к аналогии с законом Ома. В рамках данной аналогии давление эквивалентно напряжению, а скорость потока эквивалентна силе тока.

Если на пути прохождения потока установить препятствие (сопротивление), возникнет перепад давления до и после препятствия (падение напряжения на сопротивлении).

Определение перепада давление можно осуществлять как непосредственно измеряя давление жидкости до и после прохождения препятствия, так и с помощью дифференциального датчика давления, установленного на ответвлении от основного канала. Аналогично можно определить силу тока на участке цепи, зная падение напряжения на сопротивлении известного номинала.

Детектор изменения скорости потока (датчики наличия расхода)

Часто требуется определение не количественных, а качественных характеристик потока жидкости или газа. К примеру, от устройства необходимо получать сигнал только в случае, если скорость потока отклоняется от номинальной.

В данном случае чаще всего используются пороговые расходомеры на основе пьезоэффекта. В потоке устанавливается пара пьезокристаллов, включенных в электрическую цепь навстречу друг другу.

Один из кристаллов изолирован от внешнего воздействия, второй находится непосредственно в потоке вещества (Рисунок 7).

Рисунок 7. Схема расположения ключевых элементов порогового расходомера на пьезокристаллах

В случае если кристаллы находятся в одинаковых условиях, заряды на них имеют равную величину и разные знаки, напряжение на резисторе R равно нулю. Если же скорость потока изменяется, возникает изменение заряда на не изолированном кристалле, баланс зарядов нарушается, напряжение на резисторе изменяется — регистрация этого явления позволяет сделать вывод об отклонении скорости потока от номинального значения.

Приборы, в основу которых положен данный метод, как правило, могут быть использованы для анализа как жидких, так и газообразных сред.

Механические расходомеры

К этой группе относится ряд устройств, полностью лишённых электронных компонентов. В расходомерах такого типа скорость потока может измеряться, например, путём определения скорости вращения механической турбины при погружении её в поток.

Механические расходомеры довольно дешевы, однако их точность, как правило, не позволяет использовать их в большинстве критичных к этому параметру приложений. Помимо низкой точности, их недостатком является наличие подвижных частей, препятствующих потоку жидкости или газа, что также снижает точностные характеристики приборов данного типа.

Однако, это не мешает им широко использоваться в приборах учета расхода воды установленных в квартирах.

Если вам понравилась статья нажмите на одну из кнопок ниже

Источник: http://www.DeviceSearch.ru.com/article/rashodomeri

Какие существуют расходомеры и в чем разница

Расходомеры – это приборы, измеряющие объем или массу вещества: жидкости, газа или пара, которые проходят через сечение трубопровода в единицу времени. В быту расходомеры называют «счетчиками», но это неверно, потому что счетчик – только одна из составляющих конструкции расходомера. Особенности конструкции зависят от типа прибора. Сейчас используют 6 типов расходомеров, у каждого из которых – свои сильные и слабые стороны.

Расходомеры



Ротаметры относятся к классу расходомеров обтекания. В вертикальной трубке, расширяющейся кверху, течёт жидкость снизу вверх и плавает поплавок. Из-за переменного сечения трубки давление на поплавок снизу в более узком сечении больше, чем давление на поплавок сверху в более широком сечении. Когда эта разница давлений уравновешивается силой тяжести – поплавок останавливается в определенном положении, зависящем от величины расхода.

Бывают также поршневые и поплавково-пружинные ротаметры; горизонтальные ротаметры и вертикальные с потоком, который течёт сверху вниз.

В прозрачных ротаметрах расход определяется оператором визуально по шкале. В металлических ротаметрах положение поплавка через магнитную систему передаётся на шкалу прибора или преобразуется в электрический сигнал.

Ультразвуковые расходомеры (Ultrasonic Flow Meter)

Измеряя разность времени прохождения звуковой волны в направлении течения жидкости и против течения, можно вычислить скорость потока жидкости.

  • Накладные расходомеры (Clamp-On)
  • Врезные расходомеры (Inline).

Магнитные расходомеры (Magnetic Flow Meter)

Измеряют расход токопроводящей жидкости, текущей по трубе между полюсами магнита. По закону Фарадея – в проводнике (в данном случае – это токопроводящая жидкость), пересекающем магнитное поле индуцируется ЭДС, пропорциональная скорости движения. Ток направлен перпендикулярно силовым линиям магнитного поля и перпендикулярно движению жидкости.

Массовые кориолисовые расходомеры (Coriolis Flow Meter)

Используется эффект Кориолиса — сдвиг фаз механических колебаний U-образных трубок, по которым течёт жидкость, пропорционален массовому расходу.

Вихревые расходомеры (Vortex Flow Meter)

При обтекании тела (завихрителя) жидкостью или газом за ним образуются вихри, которые регистрируется пьезоэлектрическим кристаллом – при возникновении вихря он генерирует электрический импульс. Частота импульсов пропорциональна скорости потока.
Измеряемые среды: пар, насыщенный пар, газ, жидкость.

Понравилась статья? Поделиться с друзьями:
Школа авторемонта
Что делать если отказали тормоза

Закрыть