Свет как электромагнитная волна

Что такое свет с точки зрения физики?

свет как электромагнитная волна

На протяжении всей жизни нас окружают удивительные вещи, предметы, места. Мы видим их, но вовсе не потому, что они существуют, а благодаря свету.

Если бы не свет, то у живых существ не было бы зрения как инструмента, и нам пришлось бы довольствоваться другими органами чувств. Как кроты, проживающие под землей, довольствуются слухом. Что же представляет собой свет? Что это за понятие с точки зрения физики и какое значение он имеет для жизни на Земле?

Что такое свет?

Тайну света люди пытались раскрыть в течение многих столетий, однако приблизиться к разгадке удалось только в XVIII веке. Сначала датский физик Ганс Эрстеда выяснил, что электроток способен оказывать влияние на стрелку в магнитном компасе, а затем британский математик Джеймс Максвелл сумел доказать, что магнитные и электрические поля существуют в виде волн, распространяющихся со скоростью света.

Из этого ученые дали определение света как формы электромагнитного излучения, которое воспринимается глазом человека.

Какова природа света?

Установить природу света помогают оптические явления, изучением которых занимается оптика. Эта наука стала одним из первых разделов физики, установившим двойственную природу света.

Согласно корпускулярной теории, свет – это поток частиц, называемых фотонами и квантами.

По волновой теории, свет являет собой совокупность электромагнитных волн, при этом возникающие в природе оптические эффекты становятся результатом сложения данных волн.

Что интересно, и теория о потоках частиц, и теория о волнах имеют право на жизнь.

Какие характеристики имеет свет?

Как и любое природное явление, свет обладает множеством уникальных характеристик, среди которых одной из важнейших является цвет. Электромагнитное излучение, воспринимаемое нашим глазом, различается по диапазону длин и частоте волны, что, в свою очередь, влияет на световой спектральный состав. К примеру, фиолетовый цвет видится при длине волн 380–440 нм и частоте 790–680 ТГц, а желтый – при показателях 565–590 нм и 530–510 ТГц.

Помимо цвета, свет обладает способностью перемещаться в пространстве, преломляться и отражаться. Преломление света представляет собой изменение направления электромагнитных волн. В нашей обыденной жизни такое явление встречается повсеместно.

Например, если посмотреть на стакан чая, в котором находится ложка, можно заметить, что на границе воздуха и жидкости она будто «преломлена».

Аналогично привычным явлением для нас является отражение света, позволяющее увидеть себя в водной глади, зеркале или на блестящих предметах.

К другим характеристикам можно отнести способность света к поляризации и изменению интенсивности.

Какова скорость света?

Скорость света рассчитывается в двух субстанциях – в вакууме и прозрачной среде. В первом случае ее показатели неизменны. В космическом пространстве скорость света является фундаментальной постоянной единицей и составляет 299 792 458 метров в секунду.

Считается, что помимо света, с аналогичной скоростью в природе распространяются электромагнитные излучения (например, рентгеновские лучи или радиоволны) и, возможно, гравитационные волны. Скорость света, находящегося в прозрачной среде, может меняться в зависимости от фазы колебательных движений.

В связи с этим различают фазовую скорость, которая обычно (но необязательно) меньше скорости в вакууме, и групповую – всегда меньше скорости в вакууме.

Как свет воспринимается глазом?

Как говорилось выше, способность человека видеть окружающие предметы существует только благодаря свету. При этом мы не смогли бы воспринимать электромагнитные излучения, если бы в наших глазах не было специальных рецепторов, которые реагируют на данное излучение. Глазная сетчатка человека состоит из двух типов клеток – палочек и колбочек.

Первые высоко чувствительны к освещению, поэтому могут работать только при низкой освещенности, то есть отвечают за ночное зрение. При этом они демонстрируют мир исключительно в черно-белых цветах.

Колбочки обладают пониженной чувствительностью к свету и обеспечивают дневное зрение, позволяющее видеть цветное изображение.

Спектральный состав света хорошо воспринимается благодаря тому, что в наших глазах существуют 3 вида колбочек, которые различаются между собой распределением чувствительности.

Источник: http://www.vseznaika.org/fizika/chto-takoe-svet-s-tochki-zreniya-fiziki/

IV. Оптика

свет как электромагнитная волна

В конце XVII века возникли две научные гипотезы о природе света — корпускулярная и волновая.

Согласно корпускулярной теории, свет представляет собой поток мельчайших световых частиц (корпускул), которые летят с огромной скоростью. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости частиц при переходе из одной среды в другую.

Волновая теория рассматривала свет как волновой процесс, подобный механическим волнам.

Согласно современным представлениям, свет имеет двоякую природу, т.е. он одновременно характеризуется и корпускулярными, и волновыми свойствами. В таких явлениях, как интерференция и дифракция, на первый план выступают волновые свойства света, а в явлении фотоэффекта, — корпускулярные.

Свет как электромагнитные волны

Под светом в оптике понимают электромагнитные волны достаточно узкого диапазона. Нередко, под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра. Исторически появился термин «невидимый свет» — ультрафиолетовый свет, инфракрасный свет, радиоволны. Длины волн видимого света лежат в диапазоне от 380 до 760 нанометров.

Одной из характеристик света является его цвет, который определяется частотой световой волны. Белый свет представляет собой смесь волн различных частот. Он может быть разложен на цветные волны, каждая из которых характеризуется определенной частотой. Такие волны называются монохроматическими.

Скорость света

Согласно самым новым измерениям скорость света в вакууме

Измерения скорости света в различных прозрачных веществах показали, что она всегда меньше, чем в вакууме. Например, в воде скорость света уменьшается в 4/3 раза.

Отношение скорости света в вакууме к скорости света в веществе называется абсолютным показателем преломления вещества.

При переходе световой волны из вакуума в вещество частота остается постоянной (цвет не изменяется). Длина волны в среде с показателем преломления n изменяется:

Источник: http://fizmat.by/kursy/voln_optika/svet_kak_volna

Электромагнитные волны

свет как электромагнитная волна

Дж. Максвелл доказал существование электромагнитных волн еще в 1864 после того, как решил применить их к изменяющимся во времени электромагнитным полям. Проанализировав все известные на тот момент законы электродинамики, увидел связь и асимметрию между электрическими и магнитными полями.

Понятие вихревого электрического поля

Максвеллом было введено понятие вихревого электрического поля, после чего он предложил иную формулировку закона электромагнитной индукции, которая была открыта в 1831 году Фарадеем:

Определение 1

Всякое изменение магнитного поля может стать причиной порождения в окружающем пространстве вихревого электрического поля с замкнутыми силовыми линиями.

Максвелл показал гипотезу, которая говорит совсем об обратном, а именно:

Определение 2

Электрическое поле, изменяющееся во времени, является причиной появления в окружающем пространстве магнитного поля.

Рисунки 2.6.1 и 2.6.2 показывают взаимное преобразование электрического и магнитного полей.

Рисунок 2.6.1. Закон электромагнитной индукции по определению Максвелла.

Рисунок 2.6.2. Гипотеза Максвелла об изменяющемся электрическом поле, порождающим магнитное поле.

Свойства уравнений Максвелла

Вначале данная гипотеза не имела экспериментального подтверждения, а выступала как теоретическое предположение. Основываясь на ней, Максвеллу смог зафиксировать непротиворечивую систему уравнений, которые описывали взаимные превращения электрического и магнитного полей. Данная запись называлась системой уравнений электромагнитного поля, иначе говоря, уравнениями Максвелла. Исходя из теории, используются выводы:

  1. Электромагнитные волны существуют. Они могут распространяться как в пространстве, так и во времени электромагнитного поля. Электромагнитные полны поперечные, а векторы E→ и
    B→ располагаются перпендикулярно друг другу в одной плоскости, которая перпендикулярна относительно направления распространения волны. Это отчетливо видно на приведенном ниже изображении.

Рисунок 2.6.3. Снусоидальная (гармоническая) электромагнитная волна, где заданные векторы
E→, B→ и v→ перпендикулярны друг к другу.

  1. Распространение электромагнитных волн имеет конечную скорость, которая обозначается

v=1ε·ε0·μ·μ0.

По формуле ε и μ являются диэлектрической и магнитной проницаемостью веществ, а ε0 и μ0 – электрической и магнитной постоянными, имеющими значения ε0=8,85419·10–12 Ф/м, μ0=1,25664·10–6 Гн/м.

Определение 3

Длина синусоидальной волны λ связана со скоростью распространения волны υ при помощи соотношения λ=υT=υf где f – это значение частоты колебаний электромагнитного поля, причем T=1f.

Запись скорости распространения волн в вакууме (ε=μ=1) записывается как

c=1ε0·μ0=2,99792458·108 м/с≈3·108м/с.

Определение 4

Скорость распространения волны в вакууме с – это фундаментальная физическая постоянная.

Вывод Максвелла о конечной скорости распространения волн противоречил теории дальнодействия, известной на тот момент. Тогда принятие скорости распространения электрического и магнитного полей обозначали как бесконечно большое значение. Отсюда и вывод, что теория Максвелла получила название теория близкодействия.

  1. Преобразование электрического и магнитного полей в электромагнитной волне. Одновременность процессов говорит о том, что их можно считать равноправными. Отсюда имеется вывод, что объемные плотности электрической и магнитной энергии равны и записываются wэ=wм. Формула может быть записана как

ε·ε0·E22=B22μ·μ0.

Делаем вывод, что имеется связь между модулями индукции магнитного поля B→ и напряженности E→, обозначаемая отношением:

B=εμcE.

  1. Возможность перенесения энергии при помощи электромагнитных волн. Во время распространения волны появляется поток электромагнитной энергии. При выделении площадки S, изображенной на рисунке 2.6.3., видно, что она ориентирована перпендикулярно направлению распространения волны. Тогда достаточно прохождению времени Δtдля того, чтобы энергия ΔWэм смогла пройти через заданную площадку, зафиксированной формулой

ΔWэм=(wэ+wм)υSΔt.

Определение 5

Плотность потока или интенсивность I – это электромагнитная энергия, переносимая волной за определенное количество времени через поверхность единичной площади. Формула имеет вид:

I=εε0μμ0·E2=EBμμ0.

При подстановке выражения для преобразования wэ, wм и υ, получаем, что:

I=1S∆Wэм∆t·E2=EBμμ0.

Справедливо обозначение потока энергии в электромагнитной волне при помощи вектора
I→ направление которого является совпадающим с направлением распространения волны, причем модуль имеет значение EBμμ0.

Полученный вектор был назван вектором Пойтинга.

Определение 6

Синусоидальная (гармоническая) волна, находящаяся в вакууме, со средним значением плотности потока электромагнитной энергии Iср обозначается как:

Iср=12ε0μ0E02,

Где E0 обозначается амплитуда колебаний напряженности.

Обозначение плотности потока энергии с СИ — ватты на квадратный метр, то есть Вт/м2.

  1. Основываясь на теорию Максвелла, получаем, что оказание давления на поглощающее или отражающее тело производится с помощью электромагнитных волн. Это давление обусловлено возникновением слабых токов под действием электрического поля, иначе говоря, упорядочением движения зараженных частиц. На них действует сила Ампера магнитного поля волны, которая направлена в толщу вещества. Именно она является причиной создания результирующего давления, которое чаще всего имеет маленькое значение. При давлении солнечного излучения, попадающего на Землю, имеет 5 мкПа. Последователь Максвелла П.Н. Лебедев смог подтвердить теорию в 1900 году. Эти опыты были высоко значимы для электромагнитной теории Максвелла.

Имеющееся давление электромагнитных волн говорит о том, что для такого электромагнитного поля существует механический импульс, который может быть представлен в виде выражения:

g=wэмc с wэм , обозначаемое в качестве объемной плотности электромагнитной энергии, с – скоростью распространения волн в вакууме. Электромагнитный импульс способствует введению понятия электромагнитной массы.

Для поля единичного объема запишем ρэм=gc=wэмc2.

Тогда получим, что wэм=ρэмc2.

Соотношение между массой и энергией считается как универсальный закон природы. Исходя из теории относительности, данное утверждение справедливо для любых тел.

Отсюда следует, что электромагнитное поле имеет все признаки, присущие материальным телам: энергия, конечная скорость распространения, импульс, масса.

Определение 7

То есть электромагнитное поле – это одна из форм существования материи.

  1. Первым экспериментальным подтверждением теории Максвелла было произведено по прошествии 15 лет после ее создания в опытах Г. Герца в 1888 году. Герц стал изучать их свойства волн: поглощение, преломление, отражение и так далее. После чего он смог измерить длину волны, находящуюся в разных средах распространения электромагнитных волн, которые равнялись скорости света.

Опыты Герца были основополагающими для доказательства и признания электромагнитной теории Максвелла. По прошествии 7 лет она была применена в беспроводной связи, изобретенной А.С. Поповым в 1895 году.

  1. Возбуждение электромагнитных волн происходит с помощью ускоренно движущихся зарядов. Движение цепей постоянного тока имеют неизменную скорость носителей заряда, причем не являются источником таких волн. Современная радиотехника трактует изучение электромагнитных волн как наличие антенн различных конструкций с возбужденными быстропеременными токами.

Простейшая система, излучающая электромагнитные волны, считается сравнительно небольшим электрическим диполем, дипольный момент p(t) которого изменяется достаточно быстро с течением времени.

Элементарный диполь получил название диполя Герца. Радиотехника трактует его как эквивалентным небольшой антенне, размер которой меньше длины волны λ, показанной на рисунке 2.6.4.

Рисунок 2.6.4. Элементарный диполь, совершающий гармонические колебания.

Рисунок 2.6.5 позволяет понять структуру электромагнитной волны, которая излучается таким диполем.

Рисунок 2.6.5. Излучение элементарного диполя.

Максимальное значение потока электромагнитной энергии может излучаться в плоскости, которая располагается перпендикулярно оси диполя. Вдоль оси диполь не излучает энергию. Использование Герцем элементарного диполя было необходимо для излучающей и приемной антенн во время экспериментального доказательства существования электромагнитных волн.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/fizika/elektromagnitnye-kolebanija-volny/elektromagnitnye-volny/

Свет как электромагнитная волна

Свет — это форма энергии, видимая человеческим глазом, которую излучают движущиеся заряженные частицы.

ЭТО ИНТЕРЕСНО:  Почему дергается машина ваз 2110

Солнечный свет играет важную роль в жизни живой природы. Он необходим для роста растений. Растения преобразуют энергию солнечного света в химическую форму с помощью процесса фотосинтеза. Нефть, уголь и природный газ являются остатками растений, живших миллионы лет назад. Можно сказать, что это энергия преобразованного солнечного света.

Ученые с помощью экспериментов доказали, что время от времени свет ведет себя как частица, а в другое время как волна. В 1900 году квантовая теория Макса Планка объединила две точки зрения ученых на свет. И в современной физике свет рассматривают как поперечные электромагнитные волны, видимые человек, которые излучаются квантами света (фотонами) — частицами не имеющими массы и движущимися со скоростью  

Характеристики света

Как любую волну, свет можно охарактеризовать длиной (λ), частотой (υ) и скоростью распространения в какой-либо среде (v). Связь между этими величинами демонстрирует формула:

Видимый свет лежит в диапазоне длин волн электромагнитного излучения от  м (в порядке возрастания длины волны: фиолетовый, синий, зеленый, желтый, оранжевый, красный). Частота световой волны связана с его цветом.

Когда световая волна переходит из вакуума в среду, то происходит уменьшение ее длины и скорости распространения, частота световой волны остается неизменной:

n — показатель преломления среды, с — скорость света в вакууме.

Необходимо помнить, что скорость света:

  • в вакууме является универсальной постоянной во всех системах отчета;
  • в среде всегда меньше скорости света в вакууме;
  • зависит от среды, через которую он проходит;
  • в вакууме всегда больше скорости любой частицы, обладающей массой.

Волновая природа света

Волновая природа света была впервые проиллюстрирована с помощью экспериментов по дифракции и интерференции. Как и все электромагнитные волны, свет может проходить через вакуум, отражаться и преломляться. Поперечную природу света доказывает явление поляризации.

Интерференция

Световые волны, имеющие постоянную разность фаз и одинаковые частоты, производят видимый эффект интерференции, когда происходит усиление или ослабление результирующей волны.

Исаак Ньютон был одним из первых ученых, изучавших явление интерференции. В своем знаменитом эксперименте «Кольца Ньютона» он соединил выпуклую линзу с большим радиусом кривизны с плоской стеклянной пластиной.

Если рассматривать эту оптическую систему через отраженный солнечный свет, наблюдается ряд концентрических светлых и темных сильно окрашенных кругов света. Кольца проявляются из-за тонкого слоя воздуха между линзой и пластиной.

Свет, отраженный от верхней и нижней поверхности стекла, интерферирует и дает максимум интерференции в виде светлых, а минимум в виде темных колец.

Дифракция

Дифракция — это огибание световой волной препятствий. Явление можно наблюдать, когда препятствие по своим размерам сравнимо с длиной волны. Если объект намного больше длины волны от источника света, явление практически незаметно.

Результат дифракции — чередующиеся цветные и темные полосы света или концентрические окружности. Этот оптический эффект возникает в результате того, что волны, обогнувшие препятствие интерферируют. Такую картину дает отраженный от поверхности компакт-диска свет.

Источник: http://fizikatyt.ru/2017/04/05/%D1%81%D0%B2%D0%B5%D1%82-%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0%D1%8F-%D0%B2%D0%BE%D0%BB%D0%BD%D0%B0/

Методы защиты от электромагнитного излучения

Работу электрических машин и установок, линий ЛЭП и электротранспорта, бытового оборудования сопровождает электромагнитное излучение. Учитывая возросшее количество подобных приборов и устройств, возникает вопрос — какое воздействие оказывает электромагнитное излучение на человека и как защитить себя в быту или на производстве.

Что такое электромагнитное излучение

Электромагнитное излучение — это электромагнитные волны, возникающие при возмущение магнитного или электромагнитного поля. В вакууме распространяется со скоростью света, в средах показатель может отличаться, причём по существующим научным теориям как в меньшую, так и в большую сторону. Характеризуется поляризацией, длиной и частотой волны.

Теоретические свойства, способы проявления и другие показатели электромагнитного излучения обосновываются квантовой электродинамикой. Но в научной среде существуют и другие теории, которые также принимают к сведению.

Не стоит думать, что электромагнитное излучение играет только отрицательную роль, оказывая негативное влияние на организм человека. С его помощью реализованы многие технологические решения — беспроводная связь и интернет, медицинское оборудование, вооружение, простые микроволновки и другие простые устройства. Главное — соблюдать правила безопасности.

Бытовые источники электромагнитного излучения

Виды электромагнитного излучения

Основная классификация электромагнитного излучения связана с частотой волны:

  • Наиболее распространённый тип — радиоволны с частотой до 300 тысяч кГц. Возникают в результате деятельности человека и природных явлений. Больше всего переживаний у пользователей возникает по поводу сетей мобильной связи, высокоскоростного интернета, тем более сейчас, когда начинается ввод в действие сетей 5G.
  • Тепловое (инфракрасное) излучение, которое считается основой жизни человечества. Частота таких волн достигает показателя 429 ТГц. Вопросы по безопасности воздействия чаще всего связаны с востребованными сейчас инфракрасными обогревателями, которые можно встретить не только на дачах, но и в многолюдных общественных местах.
  • Видимый свет, частотные характеристики расположены в диапазоне 385–790 ТГц. Именно за счёт его наличия происходит процесс фотосинтеза у растений. Даже с видимым спектром электромагнитных излучений могут быть связаны проблемы. Например, перебои в выработке организмом человека мелатонина, что вызывает нарушения сна.
  • Ультрафиолетовое излучение отличается частотой до 30 ПГц. В обычной жизни с такими источниками можно столкнуться, наблюдая работу электросварщика, или посещая медицинские учреждения во время дезинфекции отдельных помещений и палат.
  • К жёсткому излучению относят рентгеновские лучи, гамма-волны, частотные характеристики которых ещё на несколько порядков выше. Самый известный пример — радиация, но с таким излучением в повседневной жизни вряд ли придётся встретиться.

Также читайте:  СИЗ — средства индивидуальной защиты для электрика

Практически у каждого типа электромагнитного излучения есть опасные свойства и факторы. Обычный видимый свет вполне может стать причиной повреждения сетчатки глаз, такой же эффект проявляется и в результате воздействия ультрафиолетовых лучей (обычная сварка).

На что влияет

Больше всего вопросов приходится на радиочастотный диапазон магнитного излучения. Сразу скажем, что для жилых помещений безопасным считается показатель напряжённости электрического поля 0,5–1 кВ/м и магнитного до 80 А/м.

Возможный вред здоровью во многом зависит непосредственно от частоты излучения. При постоянном нахождении в зонах, когда параметры напряжённости превышают предельно допустимые уровни, возможны следующие негативные последствия для здоровья:

  1. Нарушения деятельности нервной системы, которые становятся причиной депрессий, головных болей, появления беспричинного страха.
  2. Проблемы с сердечно-сосудистой системой, выливающиеся в общую усталость, изменение состава крови.
  3. Страдают и другие системы организма, в том числе и мочеполовая, наблюдается общее снижение иммунитета.
  4. Особо опасным считаются сверхчастотные излучения (более 300 МГц), которые становятся причиной появления различных патологий, включая и злокачественные опухоли.
  5. Опасность рентгеновского, гамма-излучения общеизвестна, именно они становятся причиной лучевой болезни.

Не стоит недооценивать возможные риски длительного нахождения в зонах распространения электромагнитного поля. Конечно, шапочки из фольги при нахождении дома — это перебор, но, как ни странно, и в этом решении есть рациональное зерно.

Действующие способы защиты

Самым эффективным способом защиты считается снижение мощности излучающих источников или простой уход из зоны его воздействия. Но если в домашних условиях, благодаря действующим СНиП и СанПиН, показатели напряжённости редко превышают действующие нормативы, то в производственных условиях избежать такого воздействия удаётся не всегда.

Уменьшение мощности источника может быть достигнуто несколькими способами:

  1. Применение поглощающих экранов и защитных конструкций.
  2. Установка блокирующих или отражающих устройств.

Также читайте:  Вредны ли светодиодные лампы для здоровья человека

Все подобные средства относят к коллективной защите, в дополнение к ним применяют и СИЗ (средства индивидуальной защиты).

Большинство средств защиты от электромагнитного поля предназначены для промышленных условий. В их число входят:

  • Отражающие экраны, козырьки и другие сооружения, из металлической сетки, арматуры, металлических листов. На практике получили более дешёвые конструкции из стали, цветных металлов и их сплавов. Все эти конструкции должны быть обязательно заземлены. Принцип действия основан на появлении в материалах экранов токов Фуко (вихревых токов), которые по амплитуде имеют сходное значение, но находятся в противофазе. В результате результирующее поле теряет свою напряжённость и не может пройти через защитную конструкцию.
  • Поглощающие конструкции делают с применением полимерных материалов — пенополистирол, различные виды резины, поролон. Хорошие показатели и пропитанной специальными составами древесины, используют и пластины из ферромагнитных сплавов, но это уже более дорогой результат.
  • Чтобы придать различным конструкциям защитные свойства, применяют токопроводящие краски на основе порошкового графита, оксидов металлов, сажи, коллоидного серебра. В этом случае получают отражающие элементы защиты от электромагнитного излучения.
  • Получили распространение и ионизаторы, которые позволяют нейтрализовать заряды статического напряжения, возникающего под воздействием электрического и магнитного поля. Такие устройства применяются и в быту.

К индивидуальным средствам защиты относят:

  • Спецодежда и обувь, изготовленная из тканей с вплетением металлических нитей.
  • Защитные очки с металлизированными покрытиями, обладающими отражающими свойствами.
  • Для предотвращения воздействия инфракрасного излучения применяют стандартные теплоизолирующие костюмы.
  • Воздействие ультрафиолетового излучения нейтрализуют защитной одеждой и очками или маской со светофильтрами. Простой пример — комплект спецодежды электросварщика.

Привели только распространённые решения, которые дают возможность нейтрализовать или минимизировать воздействие электромагнитного излучения. Но в бытовых условиях такие варианты малоприменимы.

Также читайте:  Что такое напряжение шага

Практическое применения методов защиты

Решение домашних проблем, связанных с воздействием электромагнитного поля, нужно начинать решать с банальной проверки. Для этого необходимо определить уровень напряжённости магнитного и электрического поля в квартире или доме. Если показатели не выходят за предельно допустимые уровни, о которых говорили, то не стоит переживать, они рассчитаны с многократным запасом.

Если же проблема имеется, то для уменьшения воздействия электромагнитных волн используют проверенные способы:

  1. Проверьте наличие и подключение розеток к заземляющим контурам. Рекомендуется применение этих элементов со специальными контактами РЕ проводника.
  2. Микроволновки и другие потенциально опасные бытовые устройства комплектуются корпусами с защитным экранированием. Не допускается эксплуатация даже в частично разобранном состоянии.
  3. Стационарное оборудование должно быть заземлено, по этой причине и важно наличие розеток с соответствующими контактами.

Среди других общеизвестных методов защиты от излучения порекомендуем располагать возможные источники на максимально возможном удалении. Не стоит спать рядом с микроволновкой, да и мобильным телефоном лучше пользоваться с применением гарнитуры. Но это прописные истины, поэтому на них останавливаться не будем.

Ещё раз напомним — переживать о воздействии электромагнитного излучения стоит только в том случае, если инструментальная проверка выявила повышенный уровень напряжённости поля. Насыщенная электроприборами квартира не причина для паники, при допустимых нормах никакой угрозы здоровью нет. А шапочку из фольги можно использовать только в качестве экстравагантного аксессуара.

Источник: https://OFaze.ru/teoriya/zashhita-ot-elektromagnitnogo-izlucheniya

Электромагнитные волны и свет. Часть 2. Как происходит распространение электромагнитных волн. урок. Физика 9 Класс

Механические волны – это распространение смещения атомов вещества, поэтому наличие этих атомов обязательно, без вещества они распространяться не могут.

Электромагнитные волны – это распространение изменений характеристик поля. Поэтому наличие или отсутствие вещества может повлиять только на сами изменения характеристик поля, но не на сам факт распространения электромагнитных волн. Так что связь посредством электромагнитных волн будет работать и в вакууме, и наоборот при наличии плотных преград.

Есть ли у поля граница?

Когда мы описываем взаимодействие зарядов, мы говорим о поле вблизи заряда. Речь пойдет об электрическом поле, но оно является проявлением электромагнитного, так что к нему применимы те же выводы.

Если поднести два заряда друг к другу, они притянутся или оттолкнутся. Вокруг заряда есть поле, и мы часто говорим об ограниченной области вблизи заряда, именно туда нужно поместить второй заряд, чтобы наблюдать взаимодействие.

А есть ли границы у этой области, внутри которых поле есть, а дальше – нет? По закону Кулона, сила электростатического взаимодействия зарядов равна:

Сила обратно пропорциональна квадрату расстояния между зарядами. На больших расстояниях сила  будет мала, она не будет заметно влиять на движение тел, ее не зарегистрируют доступные нам приборы, поэтому ею можно пренебречь и считать ее нулевой. Однако считать, что поле где-то заканчивается, неправильно (см. рис. 2).

Рис. 2. Зависимость силы взаимодействия от расстояния

Мы разобрали модель: заряд в свободном пространстве, и его поле есть везде, на любом исчислимом расстоянии от заряда. В реальном мире такого нет: бесконечное свободное пространство и в нем одно заряженное тело. В реальном мире множество заряженных тел, вещество состоит из заряженных протонов и электронов.

Поэтому можно рассматривать такую модель: не поле есть вблизи заряда, а поле есть везде, как некая материя, пронизывающая все пространство. И поэтому электромагнитные волны могут распространяться так же по всему пространству. А заряды и то, как они расположены, влияет на параметры этого поля в разных точках.

Вдали от зарядов поле слабее, вблизи заряда поле сильнее, вблизи другого заряда – еще сильнее. Где-то заряды распределены так, что их поля в сумме дают ноль или почти ноль, например внутри проводника. Как эти неоднородности влияют на распространение волны – это отдельная задача: где-то меняют направление, где-то отражаются и т. д.

Но принципиальное отличие от механических волн, для распространения которых нужно вещество, мы увидели.

Чтобы использовать какое-то явление, в том числе электромагнитные волны, нужно их описать, нужна модель. Причем модель должна быть простой, нет смысла рассматривать процессы подробнее, чем нужно для решения прикладных задач: построить прибор, предсказать ход процесса с требуемой точностью. Эту точность мы определяем сами, здесь важен наш опыт и способность принимать решения, об этом – в ответвлении.

ЭТО ИНТЕРЕСНО:  Как измерить амперы мультиметром

Как мы выбираем точность модели?

Навстречу друг другу катятся два шара, даны их массы  и  и скорости  и . Найдите скорости шаров после упругого столкновения.

Как вы решите такую задачу? Здесь все просто: столкновение, скорее всего, лобовое, применим закон сохранения импульса и закон сохранения энергии (см. рис. 3).

Рис. 3. Столкновение тел

и так далее, останется только решить записанные уравнения.

Но так ли все просто? По шарам при ударе распространится механическая волна, раздастся звук удара. Они могут нагреться, так как абсолютно упругий удар – это модель, такого идеального удара в реальности быть не может. Никто не отменял гравитацию, шары притягиваются. Плюс могло быть вращение шаров, проскальзывание при качении. Это все могло повлиять на скорости шаров, а мы этого не учли, записали только простые уравнения.

Как же правильно, до какой точности нужно описывать процессы? Как правильно – решаем мы сами, в зависимости от задачи, которую решаем. Если нам достаточно примерно понять, в каком направлении и приблизительно с какой скоростью будут двигаться шары и не остановится ли один из них – выбранной модели с двумя уравнениями достаточно. Если речь о бильярде, то важную роль играет вращение и нелобовые столкновения под разными углами, там это надо учесть.

Мы сами выбираем точность модели в зависимости от решаемой задачи. В задачах, которые мы решаем на уроках физики, чаще всего этот выбор уже сделал за нас автор задачи. В самом условии подразумевается, как ее правильно решать и в рамках какой модели. В задаче о шариках прямо сказано, что столкновение упругое, даны массы и скорости шариков, намекая нам на то, какие уравнения применять.

Пока рассмотрим самую простую модель: электромагнитную волну, которая представляет собой распространение синусоидальных колебаний поля. Когда мы рассматривали механические волны, мы тоже начинали с распространения синусоидальных колебаний вещества.

Что такое колебания поля? То же, что и в случае с веществом: периодически повторяющиеся изменения физических параметров. Здесь это параметры поля: напряженность, магнитная индукция (см. рис. 4).

Рис. 4. Электромагнитная индукция

Как эти изменения распространяются? Давайте рассмотрим это в моделях электрического и магнитного поля, которые мы уже хорошо изучили.

Магнитная составляющая электромагнитного поля проявляется при движении заряда в данной системе отсчета. Но при движении заряда меняется электрическое поле, поэтому можно считать, что магнитное поле возникает при изменении электрического поля. Поскольку все эти формулировки эквивалентны, выберем в качестве модели последнюю: при изменении электрического поля возникает магнитное поле.

При движении заряда с постоянной скоростью возникает постоянное магнитное поле – мы изучали магнитное поле проводника с постоянным током. А что, если заряд движется с ускорением? Скорость движения заряда изменяется, значит, изменяется магнитное поле вокруг этого заряда. А что происходит при изменении магнитного поля? Один такой случай мы описали как электромагнитную индукцию: изменение магнитного поля.

Его мы рассматривали как изменение магнитного потока через контур, которое вызывает ток в этом контуре. Вообще ток по проводнику просто так не течет, заряды движутся под действием электрического поля. Поэтому можно описать это так: при изменении магнитного поля возникает вихревое электрическое поле.

Почему вихревое – потому что оно не направлено от положительного заряда к отрицательному, оно замкнуто, и под его действием заряды движутся по кругу (см. рис. 5).

Рис. 5. Возникновение электромагнитной волны

Так вот, изменение электрического поля создает вихревое магнитное поле (оно всегда вихревое, линии магнитного поля замкнуты), а изменение магнитного поля создает вихревое электрическое поле. А его изменение, в свою очередь, создает магнитное поле, и так далее – таким образом можно описать распространение электромагнитной волны.

Мы увидели на качественном уровне, каким образом возмущение в одной области вызывает возмущение в соседней. Такая связь – это необходимое условие распространения волны.

В случае с механическими волнами есть силы, возникающие при деформации вещества, сила натяжения веревки и т. д.

В случае с электромагнитными волнами мы проследили такую цепочку: при ускоренном движении заряда изменение электрического поля вызывает появление магнитного, а изменение магнитного поля вызывает появление электрического.

Если описать эти процессы математически, как это сделал Максвелл, то получится система уравнений, простейшим решением которой действительно будет синусоидальная волна.

Эта волна поперечная, то есть возникающие при ее распространении поля направлены перпендикулярно направлению ее распространения. Математика там достаточно сложная, ею мы сейчас заниматься не будем.

Воспользуемся готовым результатом: система уравнений решается, решение представляет собой волну, и экспериментально подтвердилось, что это решение достаточно точно описывает реальные электромагнитные волны (см. рис. 6).

Рис. 6. Электромагнитная волна

Какие у нас уже есть инструменты для описания волн? Длина волны, скорость распространения волны, а так как распространяются колебания, то и частота. Эти понятия применимы и к электромагнитным волнам, и означают они то же, что и для других волн.

Скорость распространения волны – это скорость перемещения возмущения. Длина волны – это расстояние между соседними точками пространства, в которых параметры поля колеблются в одинаковой фазе. Частота – это частота колебаний параметров поля в данной точке (см.

рис. 7).

Рис. 7. Характеристики электромагнитных волн

Для электромагнитных волн справедливо уравнение, полученное для механических волн:

Скорость электромагнитных волн в вакууме постоянна и равна приблизительно 300 000 км/с, эту постоянную обычно обозначают отдельной буквой, . В веществе эта скорость немного уменьшается, при этом уменьшается длина волны, а частота остается неизменной, об этом чуть позже. А скорость распространения электромагнитных волн – это вообще максимально возможная в природе скорость, ни один материальный объект не может двигаться с большей скоростью.

Источник: https://interneturok.ru/lesson/physics/9-klass/effektivnye-kursy/elektromagnitnye-volny-i-svet-chast-2-kak-proishodit-rasprostranenie-elektromagnitnyh-voln

Физикам впервые удалось надолго запереть свет в нанорезонаторе

Международной команде ученых Нового физтеха Университета ИТМО, Центра нелинейной физики Австралийского Национального Университета и Университета Корё удалось провести эксперимент, во время которого они поймали электромагнитную волну в резонатор из арсенида галлия размером несколько сотен нанометров и удерживали ее рекордно продолжительное время. До этого свет удавалось так долго удерживать только в резонаторах значительно больших размеров. Кроме этого, учеными было экспериментально показано, что на основе разработанной системы можно реализовать эффективный нанопреобразователь частоты света.

Результаты исследований вызвали широкий интерес в международном сообществе и были опубликованы в журнале Science — одном из наиболее престижных научных журналов. Ученые говорят о совершенно новых возможностях для субволновой оптики и нанофотоники — в том числе для создания компактных сенсоров, приборов ночного видения и оптических средств передачи информации.

Проблема управления свойствами электромагнитных волн на нанометровых масштабах является одной из важнейших в современной физике.

Используя световые сигналы, мы можем передавать информацию на огромные расстояния, записывать и считывать данные и совершать другие операции, необходимые для обработки информации.

Проблема в том, что для этого свет нужно «запереть» в малой области пространства и удерживать его там длительное время, а делать это физики научились пока лишь для объектов, размер которых существенно превышает длину световой волны. Это ограничивает использование оптических сигналов в оптоэлектронике.

«Обычно, чтобы запереть свет в какой-то среде, требуются структуры значительных размеров. К примеру, многокилометровый оптоволоконный кабель, который используется сейчас, в частности, для передачи интернет-сигнала, — рассказывает сотрудник Нового физтеха и первый соавтор научной публикации Кирилл Кошелев. — Другой вариант — это упорядоченные структуры из большого числа наночастиц, которые вместе работают как единая среда, удерживающая свет».

Еще два года назад интернациональная научная команда из сотрудников Нового физтеха, Австралийского Национального Университета и Физико-технического Института им. А.Ф. Иоффе предсказала теоретически новый механизм, позволяющий захватывать и удерживать свет в очень маленьких резонаторах, размеры которых существенно меньше длины волны света и исчисляются сотнями нанометров. Однако до недавнего времени реально этого никто сделать не смог.

Изображение: Кирилл Кошелев, первый автор статьи, сотрудник Нового физтеха Университета ИТМО, и профессор Юрий Кившарь, научный руководитель Нового физтеха и глава центра нелинейной физики Австралийского Национального Университета

«В физике главный критерий все же — это эксперимент. Можно создавать какую угодно теорию, но пока она не подтверждена экспериментально, она остается теорией», — рассказал ведущий научный сотрудник Нового физтеха и соавтор исследования Андрей Богданов.

Нанометровая ловушка для света

Для того, чтобы подтвердить гипотезу двухлетней давности, была собрана международная команда ученых, включающая Университет ИТМО, Австралийский Национальный Университет и Университет Корё.

Сначала была разработана концепция: в качестве материала были выбран арсенид галлия — полупроводник, обладающий большим показателем преломления и сильным нелинейным откликом в ближнем инфракрасном диапазоне, также была подобрана наиболее оптимальная форма резонатора, которая позволяет эффективно удерживать электромагнитное излучение.

Изображение: Андрей Богданов, ведущий научный сотрудник Нового физтеха и соавтор исследования

Для эффективного захвата света необходимо заставить луч отражаться от внутренних поверхностей структуры как можно большее число раз и при этом не вылетать из резонатора. На первый взгляд может показаться, что для этого нужно придать объекту как можно более сложную форму, с многочисленными гранями.

Но на самом деле все совсем наоборот: чем больше у резонатора граней, тем скорее попавший в него свет вылетит наружу. Близкой к идеальной для этой задачи формой является цилиндр, обладающий минимальным числом граней. Остается вопрос, каково должно быть соотношение диаметра цилиндра к его высоте, чтобы обеспечить наиболее эффективное удержание света.

Математически это было рассчитано, теперь необходимо это было проверить экспериментально.

«Наши коллеги из Кореи изготовили набор цилиндрических резонаторов из арсенида галлия, это один из самых распространенных полупроводниковых материалов, широко используемых в оптоэлектронике, — рассказывает Кирилл Кошелев. — Это делается следующим образом: на тонкой пластине рисуются круги нужного диаметра, а потом вокруг них вытравливается лишний материал, оставляя цилиндры нужных размеров. Для нас были изготовлены цилиндры разных диаметров, в целом близкие к 900 нанометров.

Такой размер практически не увидеть невооруженным взглядом. Как показал эксперимент, эталонная частица захватила свет на время, превышающее в 200 раз период одного колебания световой волны. Обычно для частицы таких размеров этот показатель не превышает 5 – 10 периодов колебаний световой волны. А здесь 200! Таким образом мы экспериментально показали совершенно новое физическое явление — захват электромагнитной световой волны на очень долгое время в изолированной наночастице».

При этом в зависимости от диаметра цилиндров время удержания света падает достаточно резко, но не критично. Это важно, поскольку при массовом производстве подобных резонаторов невозможно добиться точности вплоть до одного-двух нанометров. Всегда будут погрешности в пять-десять нанометров, что, согласно результатам эксперимента, не является критичным.

«Мы пришли к совершенно новой физике, которой не было раньше. Наша работа помогает развернуть всю отрасль нанооптики, использование в ней метаматериалов, совсем в другом направлении.

До этого было непонятно, как заставить диэлектрики и полупроводники эффективно удерживать падающее поле.

И вот этот способ нами найден», — объясняет ведущий автор исследования профессор Юрий Кившарь, научный руководитель Нового физтеха и глава центра нелинейной физики Австралийского Национального Университета.

Помимо арсенида галлия для создания таких «ловушек» можно использовать и другие диэлектрики или полупроводники – к примеру, кремний, самый распространенный материал в современной микроэлектронике. А обнаруженную форму для удержания света, то есть соотношение диаметра цилиндра к его высоте, можно масштабировать и использовать для создания других по размеру ловушек.

Изображение: команда Австралийского Национального Университета в оптической лаборатории (слева-направо): доктор Сергей Крук, профессор Юрий Кившарь и аспирант Елизавета Мелик-Гайказян

Важен каждый шаг

Для того, чтобы эксперимент удался, необходимо было также использовать совершенно особенный луч света, напоминающий в сечении бублик.

«Резонатор определенной формы, в нашем случае цилиндр, хорошо откликается только на падающее поле определенной формы, — поясняет Кирилл Кошелев. — Наши специфические резонаторы откликаются на очень специфическую конфигурацию полей.

Визуально это выглядит следующим образом: у обычного лазера в середине луча максимум, а в нашем — минимум.

То есть в сечении это как бы кольцо, в середине которого почти нет электрического поля, однако за счет сильной фокусировки свет эффективно проникает в резонатор».

«В нашей работе описано пошаговое создание таких систем, показано, что каждый шаг чрезвычайно важен. Чтобы добиться большой эффективности, нужно не проиграть на каждом шаге: в размере частицы, в ее форме, в форме луча и так далее. Все эти шаги они как бы перемножаются, и если в каком-то ты проиграешь, то весь эксперимент будет умножен на ноль», — говорит Андрей Богданов.

Эксперимент ученых продолжает работы основателей квантовой механики Джона фон Неймана и Юджина Вигнера, которые почти век назад предсказали похожие эффекты для электронов в квантовой механике. Хотя фотон и электрон имеют разные свойства и их поведение отличается, происходящее описывается универсальной физикой и похожими законами.

«Нам удалось стать первыми, кто эту красивую физику Неймана и Вигнера реализовал в оптике, вернее, в нанооптике, которая работает с управлением светом в объектах, сопоставимых по размеру со световой длиной волны.

ЭТО ИНТЕРЕСНО:  Как проверить провода зажигания

Идея физики в том, что в этом резонаторе может существовать несколько электромагнитных волн с близкими частотами колебаний, которые могут взаимодействовать друг с другом.

Если две волны будут в противофазе, то есть горбы одной волны будут приходиться на впадины другой, то они будут друг друга как бы гасить и тем самым подавлять излучение света из структуры», — рассказывает Кирилл.

Источник: http://xn--80akfo2a.xn--p1ai/2020/01/28/15559/

Можно ли воздействовать на свет электрическим полем?

Оказывается, можно. И ниже я расскажу, как. Этот пост родился из моего ответа на вопрос, заданный на сайте Quora. Речь пойдёт о квантовом вакууме. Так он выглядит в представлении художника.

Сredit: lactamme.polytechnique.fr

Откуда вопрос?

Вопрос в оригинале звучит так: Light is an electromagnetic particle. Can we deviate its path by applying electric or magnetic fields to it?
Или в переводе: Свет — это электромагнитная частица. Можем ли мы изменить его траекторию, приложив электрическое или магнитное поле?
Вообще говоря, и на это указано в ответах на Quora, вопрос не совсем корректно сформулирован.

Свет — это не частица, а волна или (корпускулярно-волновой дуализм!) поток частиц, квантов света — фотонов. Однако эта некорректность не отменяет самого вопроса. Действительно, если свет имеет электромагнитную природу, то почему бы нельзя было воздействовать на него электромагнитными полями? Приблизительно так обычно изображается электромагнитная волна в учебных курсах.

Почему мне захотелось ответить на этот вопрос, так это потому, что он, на самом деле, имеет двойное дно. Есть ответ очевидный и ответ, который можно дать, только обладая определёнными знаниями, выходящими за рамки школьной программы.

Но сначала договоримся, что дальше речь пойдёт только о вакууме, поскольку на распространение света в среде можно оказывать влияние электрическим или магнитным полем опосредованно через воздействие на эту среду.

Очевидный ответ

Так вот, очевидный ответ: нет, нельзя. Почему нельзя, можно объяснять по-разному в зависимости от того, как представлять свет. Если описывать свет как электромагнитную волну, то невозможность воздействовать на него электромагнитными полями следует из линейности уравнений Максвелла, которые собственно и описывают все электромагнитные явления в классической физике.

Электромагнитная волна — это одно из решений этих уравнений, а внешнее поле — это другое решение. В силу свойства линейности, их сумма также является решением уравнений Максвелла, и потому они никак друг другу «не мешают» и не оказывают друг на друга никакого воздействия.

Уравнения Максвелла в вакууме в системе СИ Если же описывать свет как поток частиц — фотонов — то ответ объясняется тем, что фотоны не обладают электрическим зарядом, а электромагнитные поля действуют только на заряженные частицы. Интересно, что эта ситуация уникальна для электромагнитного взаимодействия.

Переносчики двух других фундаментальных взаимодействий, слабого и сильного, сами также могут принимать участие в переносимом ими взаимодействии. Кто с кем взаимодействует в Стандартной модели.

Credit: Труш Виталий // Wikimedia Commons // CC-BY-SA 3.0

Например, согласно квантовой хромодинамике, сильное взаимодействие переносится глюонами. Они осуществляют взаимодействие между частицами, обладающими так называемым цветным зарядом — аналогом электрического заряда для сильного взаимодействия. При этом глюоны и сами обладают цветным зарядом и потому взаимодействуют и между собой, и с другими частицами с цветным зарядом.

Возвратимся, однако, к нашим баранам фотонам.

Неочевидный ответ

Выше я уже отметил, что очевидный ответ — это лишь первый слой. Давайте снимем и второй. Так вот, неочевидный ответ — да, на свет можно воздействовать внешними полями. Эта возможность связана с тем, что согласно квантовой электродинамике вакуум, его ещё называют квантовым вакуумом, не является абсолютной пустотой.

Более того, она наполнен так называемыми виртуальными частицами, известными также как квантовые флуктуации. Их можно представлять себе как рождающиеся на короткий промежуток времени и тут же аннигилирующие пары частицы и античастицы, в первую очередь электрона и позитрона. Картинка, поясняющая идею квантовых флуктуаций.

Credit: universe-review.ca

Если продолжить описывать квантовый вакуум в виде образов, то во внешнем электрическом (и магнитном, но остановимся только на электрическом) поле виртуальные пары начинают жить чуть дольше, поскольку электрическая сила их слегка «растаскивает». Это приводит к тому, что у вакуума появляется поляризация. А там, где есть поляризация, там есть и диэлектрическая проницаемость! Если вы помните школьный курс оптики, то дальнейшие рассуждения для вас должны быть очевидны. Действительно, мы знаем, что изменение диэлектрической проницаемости приводит к изменению коэффициента преломления и скорости света, а это, в свою очередь, приводит к преломлению и отражению света. Этот эффект, конечно, очень слаб, и для его наблюдения требуются совершенно фантастические по величине поля. Кроме того, наблюдать преломление света в таких полях было бы очень сложно из-за его незначительности. Несмотря на это, сейчас уже всерьёз говорят о том, чтобы лет через 10–20 наблюдать влияние поляризации вакуума на распространение света в лаборатории.

Для генерации сверхсильных полей при этом предполагается использовать лазеры сверхвысокой пиковой мощности. На данный момент построены лазеры мощностью более 1 петаватта (пета- означает множитель 1015), с их помощью было получено излучение, электрическое поле в котором достигает величины порядка 1014–1015 вольт на метр. Это всего в 1000 раз меньше так называемого швингеровского предела, при котором и становятся заметны эффекты квантовой электродинамики в вакууме.

Однако для наблюдения эффекта необязательно достигать предела, достаточно полей в десятки раз слабее. А это значит, что уже через одно-два поколения сверхмощных лазеров — при мощностях порядка 100 петаватт — в лаборатории смогут изменить направление распространения света с помощью другого света, то есть с помощью электромагнитных полей.

Измерять при этом, правда, будут не направление распространения, а поляризацию света. Дело в том, что вакуум в сверхсильном поле действует как двулучепреломляющая среда.

Скорости волн с разной поляризацией в такой среде различны, поэтому при распространении в ней произвольно поляризованной волны, её поляризация будет изменяться и вот это изменение измерить значительно легче.

Источник: https://habr.com/post/365941/

Электромагнитная природа света

Свет – это видимый участок спектра электромагнитной волны, длина которого находится в диапазоне от 0,4 мкм до 0,76 мкм. Определенный свет может быть поставлен в соответствие с каждой спектральной составляющей оптического излучения. Окраска спектральных составляющих зависит от длины волны. По мере уменьшения ее длины меняется цвет излучения. Изменение цвета происходит в таком порядке:

  • красный;
  • оранжевый;
  • желтый;
  • зеленый;
  • голубой;
  • синий;
  • фиолетовый.

Красный свет, который соответствует наибольшей длине волны, определяет красную границу спектра. Фиолетовой границе соответствует фиолетовый свет. Естественный свет не имеет цвета, он представлен в виде суперпозиции электромагнитных волн всего видимого спектра.

Естественный свет возникает в результате испускания электромагнитных волн при помощи возбужденных атомов. Характер данного возбуждения может быть различным: химический, тепловой, электромагнитный.

В результате данного возбуждения атомы излучают электромагнитные волны в течение 10-8 секунд. Энергетический спектр атома достаточно широкий, поэтому электромагнитные волны излучаются из всего видимого спектра.

Начальная фаза, поляризация и направление имеют случайный характер. Именно поэтому естественный свет не поляризован.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Поскольку свет представляет собой электромагнитные волны, в основу оптической физики положены уравнения Максвелла и все соотношения электромагнитных волн, что вытекают из них. В соответствии с электромагнитной теорией Максвелла $ \frac{C}{V} = \sqrt{\xi \mu} = n$, где $C$ и $V$ — скорости распространения света в среде с магнитной $\mu $ и диэлектрической $\xi $ проницаемостью в вакууме.

Это соотношение связывает электрические, оптические и магнитные постоянные вещества. В соответствии с теорией Максвелла, $\mu $ и $\xi$ — это величины, которые не зависят от длины световой волны, поэтому электромагнитная не теория не может объяснить явление дисперсии, то есть зависимость показателей преломления от длины световой волны.

Значения показателей преломления могут охарактеризовать оптическую плотность среды, а также оптические плотные среды. Длина световой волны с показателем $n$ напрямую связана с длиной волны в вакууме:

$\lambda = \frac{\lambda_0}{n} $

Понятие о когерентности и сложение колебаний

Определение 1

Когерентность – это коррелированность нескольких волновых или колебательных процессов во времени, которая проявляются при их сложении. Колебания когерентные в том случае, если разность их фаз во времени постоянна, а при сложении колебаний возникает колебание такой же частоты.

Классическая волновая оптика рассматривает среды, которые линейны по своим оптическим свойствам, иными словами, магнитная и диэлектрическая проницаемость которых не зависит от интенсивности света. Поэтому принцип суперпозиции волн справедлив в волновой оптике. Явления, что наблюдаются при распространении света в нелинейных средах, изучаются в нелинейной оптике.

Оптические нелинейные эффекты существенны при больших интенсивностях света, что излучается при помощи мощных лазеров. Две волны, что имеют одинаковую частоту, накладываются друг на друга и возбуждают в определенной точке колебания одинакового направления:

$A_1 cos {\omega t + \alpha 1}, A_2 cos {\omega t + \alpha 2}$

В данной точке амплитуда результирующего колебания будет выглядеть следующим образом:

$A2 = A_{1}{2} + A_{2}{2} + 2A_1 a_2 cos {\sigma}$, где $\sigma = \alpha_2 — \alpha_1$

Определение 2

Если разность фаз $\sigma$ колебаний, что возбуждаются волнами, во времени остается постоянной, то такие волны называются когерентными.

Интерференция световых волн

Явление интерференции света заключается в отсутствии суммирования интенсивности световых волн при их наложении друг на друга, иными словами, при взаимном усилении данных волн в одних точках и ослаблении в других точках пространства. Когерентность – это необходимое условие интерференции. Монохроматические волны одинаковой частоты, которые не ограничены в пространстве волны, удовлетворяют данное условие.

Поскольку ни один реальный источник не дает монохроматического света, то волны, что излучаются источниками света, всегда некогерентные. Но из-за поперечности электромагнитных волн, когерентности недостаточно для того, чтобы получить интерференционную картину. Как было сказано ранее, положительность процесса излучения примерно равна 10-8 секунд.

За этот период возбужденный атом растрачивает свою избыточную энергию на излучение, после чего возвращается в нормальное состояние и процесс излучения света прекращается. Спустя некоторое время атом вновь может возбудиться и начать процесс излучения.

Данное прерывистое излучение света характерно для любого светового источника, независимо от особенностей тех процессов, которые протекают в источнике и вызывают возбуждение атомов.

Оптическая длина пути

Пусть разделение на две когерентные волны происходит в конкретной точке $O$. До точки $M$, где можно наблюдать интерференционную картину, в результате преломления $n_1$ одна волна прошла путь $S_1$, а вторая волна в среде $n_2$ прошла путь $S_2$. В точке $O$ фаза колебаний равна $\omega t $, а в точке $M$ первая волна возбуждает колебание $A_1 cos{\omega \left(t) \frac{S_1}{V_1}+ \alpha_1 \right) }$.

Вторая волна создает колебание: $A_2 cos{\omega \left(t) \frac{S_2}{V_2}+ \alpha_2 \right) }$, где

  • $V_1 = \frac{c}{n_1} $
  • $V_2 = \frac{c}{n_2} $ — это фазовая скорость первой и второй волны.

Определение 3

Произведение геометрической длины пути световой волны, которая обозначается символом $S$, на показатель преломления данной среды называется оптической длиной волны $L$. А $\delta –L_2 – L_1$, что является разностью оптических длин, называется оптической разностью хода.

Если оптическая разность хода равна целому числу волн в вакууме $\delta = m \lambda_0 (m_0 = 0,1,2)$, то $\sigma = 2m \pi $ и колебания, что возбуждаются в точке $М$, происходят в одинаковой фазе. Следовательно, это максимум. Поэтому, если оптическая разность хода $\delta = (2m +1)\frac {\lambda_0 }{2}$, то $\sigma = (2m+1) \pi$ и колебания, что возбуждаются в точке $М$, происходят в противофазе.

В завершении хочется сказать, что электромагнитная природа света подтверждена окончательно. В 2009 году ученые-физики разработали методику, которая способна с точностью измерить колебания магнитной составляющей света. Уже давно стало ясно, что свет – это электромагнитная волна. Первым это открыл Максвелл.

Он получил волнообразное решение своих уравнений и вычислил скорость данных волн. В результате этого получилось значение, которое было очень близким к скорости света.

Ученый тут же предположил, что свет является электромагнитной волной, а частота ее колебаний определяет некоторые свойства (в первую очередь, это цвет света).

Электромагнитная волна (радиоволна или рентгеновское излучение) представлена в виде пары магнитного и электрического полей, которые постоянно превращаются друг в друга, поддерживая ее распространение. Магнитный и электрический векторы направляются перпендикулярно друг к другу и направлению распространения волны.

Источник: https://spravochnick.ru/fizika/elektromagnitnaya_priroda_sveta/

Понравилась статья? Поделиться с друзьями:
Школа авторемонта
Где расположен блок предохранителей

Закрыть