Как устроена клетка человека

Клетки живых организмов

как устроена клетка человека

 Самое ценное, что есть у человека — это его собственная жизнь и жизнь его близких. Самое ценное, что есть на Земле — это жизнь в целом. А в основе жизни, в основе всех живых организмов лежат клетки. Можно сказать, что жизнь на Земле имеет клеточное строение. Вот почему так важно узнать, как устроены клетки. Строение клеток изучает цитология — наука о клетках. Но представление о клетках необходимо для всех биологических дисциплин.

Что же такое клетка?

Определение понятия

Клетка — это структурная, функциональная и генетическая единица всего живого, содержащая наследственную информацию, состоящая из мембранной оболочки, цитоплазмы и органоидов, способная к поддержанию гомеостаза, обмену,  размножению и развитию.  Сазонов В.Ф., 2015. kineziolog.bodhy.ru, 2015.  kineziolog.su, 2016.

Данное определение клетки является хотя и кратким, но достаточно полным. Оно отражает 3 стороны универсальности клетки: 1) структурную, т.е. как единицу строения,, 2) функциональную, т.е. как единицу деятельности, 3) генетическую, т.е. как единицу наследствености и смены поколений. Важной характеристикой клетки является наличие в ней наследственной информации в виде нуклеиновой кислоты — ДНК.

Также определение отражает важнейшую черту строения клетки: наличие наружной мембраны (плазмолеммы), разграничивающую клетку и окружающую её среду. И, наконец, 4 важнейших признака жизни: 1) поддержание гомеостаза, т.е. постоянства внутренней среды в условиях её постоянного обновления, 2) обмен с внешней средой веществом, энергией и информацией, 3) способность к размножению, т.е. к самовоспроизведению, репродукции, 4) способность к развитию, т.

е. к росту,  дифференцировке и формообразованию.

Более краткое, но неполное определение: Клетка — это элементарная (наименьшая и простейшая) единица жизни.

Более полное определение клетки:

Клетка — это ограниченная активной мембраной упорядоченная, структурированная система биополимеров, образующих цитоплазму, ядро и органоиды. Эта биополимерная система участвует в единой совокупности метаболических, энергетических и информационных процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Ткань — это совокупность клеток, сходных по строению, функциям и происхождению, совместно выполняющих общие функции. У человека в составе четырех основных групп тканей (эпителиальной, соединительной, мышечной и нервной) имеется около 200 различных видов специализированных клеток [Фалер Д.М., Шилдс Д. Молекулярная биология клетки: Руководство для врачей. / Пер. с англ. — М.: БИНОМ–Пресс, 2004. — 272 с.].

Ткани, в свою очередь, образуют органы, а органы — системы органов.

Живой организм начинается от клетки. Вне клетки жизни нет, вне клетки возможно только временное существование молекул жизни, например, в виде вирусов. Но для активного существования и размножения даже вирусам нужны клетки, пусть даже и чужие.

Строение клетки

 На рисунке, представленном ниже, даны схемы строения 6 биологических объектов. Проанилизируйте, какие из них можно считать клетками, а какие нельзя, согласно двум вариантам определения понятия «клетка».  Оформите свой ответ в виде таблички:

Название объекта Это клетка, потому что Это не клетка, потому что Примечание
1 Животная клетка  имеет
2 Растительная клетка
 3

Мембрана

 Важнейшей универсальное структурой клетки является клеточная мембрана (синоним: плазмолемма), покрывающая клетку в виде тонкой плёнки. Мембрана регулирует отношения между клеткой и окружающей её средой, а именно: 1) она частично отделяет содержимое клетки от внешней среды, 2) связывает содержимое клетки с внешней средой.

Ядро

Второй по значению и универсальности клеточной структурой является ядро. Оно есть не во всех клетках, в отличие от клеточной мембраы, поэтому мы и ставим его на второе место.

В ядре находятся хромосомы, содержащие двойные нити ДНК (дезоксирибонуклеиновой кислоты). Участки ДНК являются матрицами для построения информационных РНК, которые в свою очередь служат матрицами для построения в цитоплазме всех белков клетки.

Таким образом, в ядре содержатся как бы «чертежи» строения всех белков клетки.

Цитоплазма

Это полужидкая внутренняя среда клетки, разделённая внутриклеточными мембранами на отсеки. Она обычно имеет цитоскелет для поддержания определённой формы и находится в постоянном движении. В цитоплазме находятся органоиды и включения.

Органоиды

На третье место можно поставить все остальные клеточные структуры, которые могут иметь собственную мембрану и называются органоидами.

Органоиды – это постоянные, обязательно присутствующие структуры клетки, выполняющие специфические функции и имеющие определенное строение. По строению органоиды можно разделить на две группы: мембранные, в состав которых обязательно входят мембраны, и немембранные. В свою очередь, мембранные органоиды могут быть одномембранными – если образованы одной мембраной и двумембранными – если оболочка органоидов двойная и состоит из двух мембран.

Включения

Включения — это непостоянные структуры клетки, которые появляются в ней и исчезают в процессе метаболизма. Различают 4 вида включений:  трофические (с запасом питательных веществ), секреторные (содержащие секрет), экскреторные (содержащие вещества «на выброс») и пигментные (содержащие пигменты — красящие вещества).

Клеточные структуры, включая органоиды (подробнее)

Включения. Они не относятся к органоидам. Включения — это непостоянные структуры клетки, которые появляются в ней и исчезают в процессе метаболизма. Различают 4 вида включений: трофические (с запасом питательных веществ), секреторные (содержащие секрет), экскреторные (содержащие вещества «на выброс») и пигментные (содержащие пигменты — красящие вещества).

  1. Мембрана (плазмолемма).
  2. Ядро с ядрышком.
  3. Эндоплазматическая сеть: шероховатая (гранулярная) и гладкая (агранулярная).
  4. Комплекс (аппарат) Гольджи.
  5. Митохондрии.
  6. Рибосомы.
  7. Лизосомы. Лизосомы (от гр. lysis — «разложение, растворение, распад» и soma — «тело») — это пузырьки диаметром 200—400 мкм.
  8. Пероксисомы. Пероксисомы — это микротельца (пузырьки-везикулы) 0,1-1,5 мкм в диаметре, окружённые мембраной.
  9.  Протеасомы. Протеасомы – специальные органоиды для разрушения белков.
  10. Фагосомы.
  11. Микрофиламенты. Каждый микрофиламент — это двойная спираль из глобулярных молекул белка актина. Поэтому содержание актина даже в немышечных клетках достигает 10% от всех белков.
  12. Промежуточные филаменты. Являются компонентом цитоскелета. Они толще микрофиламентов и имеют тканеспецифическую природу:
  13. Микротрубочки. Микротрубочки образуют в клетке густую сеть. Стенка микротрубочки состоит из одного слоя глобулярных субъединиц белка тубулина. На поперечном срезе видно 13 таких субъединиц, образующих кольцо.
  14. Клеточный центр.
  15. Пластиды.
  16. Вакуоли. Вакуоли – одномембранные органоиды. Они представляют собой мембранные «ёмкости», пузыри, заполненные водными растворами органических и неорганических веществ.
  17. Реснички и жгутики (специальные органоиды). Состоят из 2-х частей: базального тельца, расположенного в цитоплазме и аксонемы — выроста над поверхностью клетки, который снаружи покрыт мембраной. Обеспечвают движение клетки или движение среды над клеткой.

Источник: http://kineziolog.su/content/kletki-zhivykh-organizmov

Клетка — основа жизни

как устроена клетка человека

Почти все живые существа состоят из очень маленьких «кирпичиков», которые назы­ваются клетками. Большинство клеток настолько малы, что увидеть их можно лишь под мощным микроскопом. При этом каждая клетка может жить сама по себе, создавать по­хожие на себя клетки и развиваться.

Некоторые из живых существ имеют только одну клетку. Это бактерии, одноклеточные жи­вотные и одноклеточные растения. Но большин­ство животных, растений и грибов — многокле­точные. Многоклеточные организмы сложены из множества групп различных клеток, которые имеют свою специализацию и образуют различ­ные органы. Например, в человеческом организ­ме более 220 видов клеток.

Поразительно, но миллиарды самых раз­ных клеток организма (человека или животно­го) происходят всего-навсего из одной оплодо­творенной клетки (зиготы). В этой мельчайшей частичке живого вещества уже содержатся все сведения о том, какой организм ей следует по­строить, и даже последовательность этого стро­ительства.

Образование разных групп клеток

Сначала оплодотворенная яйцеклетка де­лится и создает свои точные копии. Дочерние клетки также начинают делиться. Так создаются эмбриональные стволовые клетки, из которых затем развиваются различные клетки костной, жировой, мышечной, нервной тканей.

Стволовые клетки существуют и в некото­рых тканях взрослых организмов. Больше всего их находится в костном мозге. Такие стволовые клетки могут оставаться в состоянии покоя до тех пор, пока не возникнет необходимость в но­вых клетках для поддержания целостности тка­ней и органов в результате старения, болезни или травмы.

Живая клетка — это не видимая простым глазом уникальная «лаборатория», которая живет особой жизнью. Ее различные орга­ны выполняют самую разнообразную работу. Одни из них занимаются изготовлением бел­ков, другие обеспечивают транспортировку ве­ществ, третьи поставляют клетке необходимую энергию, четвертые хранят наследственную информацию.

Клетка постоянно обменивается вещества­ми с внешней средой и другими клетками ор­ганизма. Снаружи она получает энергию, воду, кислород и другие нужные вещества. В окружа­ющую среду она отдает вредные продукты жиз­недеятельности (углекислый газ, аммиак и др.).

При этом состав клеток в течение всей жизни организма постоянно обновляется. Часть их ве­ществ распадается, а часть создается заново. При распаде белков, жиров и углеводов освобожда­ется энергия, необходимая для жизнедеятель­ности организма, а при создании новых веществ энергия поглощается.

Эти два прямо противо­положных процесса в клетках совершаются од­новременно.

Клетки способны реагировать на действие определенных раздражителей. Так, клетки сетчатки глаза чувствительны к свету. Клетки кожи воспринимают температуру и механи­ческие воздействия. Мышечные клетки спо­собны к сокращению под влиянием нервных импульсов. Нервные клетки могут проводить биоэлектрические импульсы наподобие про­водов.

Как делятся клетки?

Увеличение числа клеток при развитии организма

Большинство видов клеток обладает способ­ностью к делению и передаче наследствен­ной информации дочерним клеткам. Благо­даря этому происходят рост тканей и замена отмирающих клеток на новые. Деление бы­вает двух типов — митоз и мейоз.

При митозе одна клетка делится на две, число хромосом удваивается, и в каждой дочерней клетке оказывается то же количество хромосом, что было в материнской. Например, у человека в дочерних клетках оказывается по 46 хромо­сом.

При мейозе деления два, образуется че­тыре клетки, и в каждой из них оказывается 23 хромосомы.

Как устроены клетки?

Формы клеток необы­чайно разнообразны — от простейшей шаро­видной у одноклеточных до са­мых причудливых. И размеры клеток тоже различные: одно­клеточные бактерии микро­кокки имеют диаметр 0,2 мкм, нервные клетки достигают в длину 1 м, а млечные сосуды растений — нескольких метров.

Заглянуть внутрь клетки и понять ее устройство человек смог лишь благодаря изобрете­нию электронного микроскопа. Этот сложнейший прибор позволил добиться увеличения в миллионы раз. При таком увеличении обычный апельсин будет выглядеть больше земно­го шара.

С помощью электронного микроскопа ученые обнару­жили в клетке множество раз­личных маленьких органов, ко­торые назвали органоидами или органеллами. Сумели ис­следователи заглянуть и в хра­нилище наследственной ин­формации — ядро клетки.

Строение растительной клетки

Основными компонентами, из которых состоят растительные клетки, являются ядро, ци­топлазма с многочисленными органоидами различного строения и функций, оболочка и вакуоль. Оболочка покрывает клетку снаружи, под ней находится цитоплазма, в ней — ядро и одна или несколько вакуолей.

Строение животной клетки

Все части организма животного — от костей до крови — состоят из клеток. Клетка окружена мембраной, которая пропускает одни вещества и задерживает другие. Внутри нее находит­ся вязкая жидкость — цитоплазма — и защищенное мембраной ядро, содержащее наслед­ственный материал. В цитоплазме есть маленькие структуры — органоиды, отвечающие за жизнедеятельность клетки.

Можно ли потрогать клетку?

Некоторые клетки можно не только увидеть, но и по­трогать руками. Например, желток куриного яйца — это одна большая оплодотворенная яйцеклетка. Яйцо стра­уса — тоже клетка, которая может весить более кило­грамма.

Яйцо страуса, точнее его желток, — одна клетка, и из нее постепенно развивается многоклеточный организм — птенец

Вопросы для самопроверки

  1. Какие клетки производят остальные клет­ки организма и где они находятся у взрослых?
  2. Чем отличаются друг от друга митоз и мейоз?
  3. Какой длины бывают нерв­ные клетки?
  4. У каких клеток есть хлоропласты и клеточная стенка?
  5. Почему митохондрию на­зывают маленькой энерге­тической станцией клетки?
  6. Что в клетке отвечает за сохранение и передачу наследственной инфор­мации?

Ответы

  1. Начало остальным клет­кам организма дают стволо­вые клетки. У взрослых они находятся в костном мозге.
  2. При митозе количество хромосом удваивается и рас­пределяется по двум клет­кам. При мейозе то же коли­чество хромосом распреде­ляется по четырем клеткам, и в каждой из них оказыва­ется в два раза меньше хро­мосом, чем в материнской.
  3. Нервные клетки, точнее их отростки, достигают в длину 1 м.
  4. Хлоропласты и клеточная стенка есть у растительных клеток.
  5. Митохондрия отвечает за производство энергии.
  6. За сохранение и передачу наследственной информа­ции в клетке отвечает ядро.

Источник: https://web-zoopark.ru/nauka_o_zhivotnih/kletka-osnova-zhizni.html

Конспект

как устроена клетка человека

Раздел ЕГЭ: 2.4. Строение клетки. Взаимосвязь строения и функций частей и органоидов клетки — основа ее целостности.

Клетка представляет собой элементарную систему биополимеров, ограниченных мембраной, образующих основные структурные компоненты — оболочку, цитоплазму и ядро, обеспечивающих метаболические процессы и осуществляющих поддержание и воспроизведение всей системы. Это элементарная структурно-функциональная и генетическая единица живого.

Ранее изученная информация о строении и функции клеток в 6-9 классах:

Структура и функции мембран клетки

Биологическая мембрана образована билипидным слоем жидких фосфолипидов. Молекулы липидов гидрофильными концами обращены наружу, а гидрофобными — друг к другу. Белковые молекулы могут находиться на поверхностях липидов (периферические белки), пронизывать один слой (полуинтегралъные) и оба слоя (интегральные) липидов.

Липиды и белки удерживаются гидрофильно-гидрофобными взаимодействиями. На поверхности мембран располагается гликокачикс — разветвленные гликопротеиновые структуры, которые обеспечивают рецепторную функцию и взаимосвязь клеток многоклеточного организма. Свойства: пластичность; способность к самозамыканию: избирательная проницаемость.

 Функции: структурная; регуляторная; защитная; рецепторная; ферментативная; разграничительная.

Плазмалемма — цитоплазматическая мембрана, покрывающая клетку. На наружной поверхности мембраны имеется гликокаликс. У животных клеток она может быть покрыта муцином, слизью, хитином; у растений — целлюлозой, лигнином. Функции: барьерная; регуляторная; рецепторная; структурная.

Эндоцитоз — поступление веществ в клетку. Способы поступления веществ в клетку:

  • простая диффузия — поступление в клетку ионов и мелких молекул через плазмалемму по градиенту концентрации без затрат энергии;
  • осмос — поступление в клетку растворителя (воды) по градиенту концентрации без затрат энергии;
  • облегченная диффузия — перемещение веществ с участием белков-переносчиков (пермеаз) по градиенту концентрации без затрат энергии (некоторые аминокислоты);
  • активный транспорт — перемещение веществ против градиента концентрации с помощью транспортных белков — поринов и АТФ-аз с затратой энергии (так в клетку поступают ионы Са2+ и Mg2+, моносахариды, аминокислоты);
  • фагоцитоз — поступление в клетку крупных молекул и частиц; при этом мембрана клетки окружает частицу, края ее смыкаются и частица поступает в цитоплазму в мембранном пузырьке — эндосоме (идет с затратой энергии);
  • пиноцитоз — поступление в клетку капелек жидкости аналогично фагоцитозу.

Экзоцитоз — выведение из клетки веществ (гормонов, белков, капель жира), заключенных в мембранные пузырьки.

ЭТО ИНТЕРЕСНО:  Где находится реле поворотов на ваз 2107

 Цитоплазма

Цитоплазма состоит из воды (85%), белков (10%), органических и минеральных соединений (остальной объем). В цитоплазме различают гиалоплазму, цитоскелет, органеллы и включения.

Гиалоплазма. Представляет собой коллоидный раствор, обеспечивающий вязкость, эластичность, сократимость и движение цитоплазмы, в котором протекают реакции внутриклеточного метаболизма. Является внутренней средой клетки, где протекают реакции внутриклеточного обмена.

Цитоскелет. Образован развитой сетью белковых нитей — филаментов. Представлен микротрубочками, микрофиламентами и промежуточными филаментами.

Микротрубочки — тонкие трубочки диаметром около 24 нм, толщина их стенки около 5 нм, образованы белком тубулином. Образуют веретено деления, входят в состав жгутиков и ресничек, располагаются в цитоплазме клеток. Обеспечивают расхождение дочерних хромосом в анафазах митоза и мейоза, движение жгутиков и ресничек, перемещение органелл и придают форму клетке.

Микрофиламенты — очень тонкие белковые нити диаметром около 6 нм, образованы преимущественно белком актином. Они переплетаются и образуют густую сеть в цитоплазме. Обеспечивают двигательную активность гиалоплазмы, участвуют в эндо- и экзоцитозе.

Промежуточные филаменты — диаметр их около 10 нм, образованы молекулами разных фибриллярных белков (цитокератин и др.). Выполняют опорную функцию.

 Органеллы клетки. Это постоянные структурные компоненты цитоплазмы клетки, имеющие определенное строение и выполняющие определенные функции. Большинство органелл имеют мембранное строение, мембраны отсутствуют в структуре рибосом и центриолей.

Органеллы общего назначения имеются в большинстве клеток (эндоплазматическая сеть, митохондрии, комплекс Гольджи и др.); специального назначения содержатся только в специализированных клетках (жгутики, реснички, пульсирующие вакуоли, миофибриллы и др.).

 Эндоплазматическая сеть (ЭПС) — это система каналов, образованных биологическими мембранами и пронизывающих гиалоплазму. Каналы ЭПС соединены с перинуклеарным пространством. Имеется гладкая ЭПС и гранулярная — на ее мембранах расположены рибосомы. Участвует в транспорте веществ, синтезированных в клетке и поступивших извне; делении цитоплазмы на отсеки; синтезе жиров и углеводов (агранулярная функция) и белков (гранулярная функция).

Рибосомы — сферические тельца диаметром 15-35 нм, состоящие из большой и малой субъединиц, построены из белка и рРНК. Располагаются на мембранах ЭПС, на наружной ядерной мембране, в цитоплазме. Непосредственно участвуют в сборке молекул белков (трансляция).

 Митохондрии содержат две мембраны, наружную — гладкую и внутреннюю, которая образует выросты внутрь матрикса (гомогенного содержимого) — кристы. В матриксе располагаются кольцевые молекулы ДНК и рибосомы, а на кристах — АТФ-сомы (грибовидные тела). Участвует в кислородном этапе энергетического обмена; синтезе АТФ и специфических белков.

Комплекс (аппарат) Гольджи образован комплексом биологических мембран в виде узких каналов, расширяющихся на концах в цистерны, от которых отпочковываются пузырьки, способные превращаться в вакуоли. Участвует в концентрации, обезвоживании, уплотнении и упаковке веществ; образовании первичных лизосом; сборке комплексных органических соединений (липопротеинов, гликолипидов и др.).

Лизосомы — шаровидные тельца, ограниченные биологической мембраной, диаметром 0,2-1 мкм. Внутри содержится около 40 гидролитических ферментов. Расщепляют пищевые вещества и бактерии, поступившие в клетку (гетерофагия); разрушают временные органы эмбрионов, личинок и отмирающие структуры (аутофагия).

 Пластиды — органоиды, содержащиеся только в растительных клетках. Имеют размеры 5-10 мкм. Их стенка образована двумя мембранами, между которыми располагается строма, пронизанная параллельно расположенными мембранами — тилакоидами. В отдельных участках тилакоидов находятся замкнутые полости (граны). В строме есть ДНК и рибосомы.

Хлоропласты в гранах содержат хлорофилл. В них происходит фотосинтез и синтез специфических белков.

Хромопласты построены сходно с хлоропластами. Содержат пигменты — каротиноиды, придающие окраску цветкам и плодам.

Лейкопласты имеют сходное с хлоропластами строение. Не содержат пигментов. В них происходит синтез и накопление белков, жиров и углеводов.

 Центросома (клеточный центр) — органоид, содержащийся вблизи ядра клетки. Представлен двумя центриолями, окруженными центросферой. Цилиндрические центриоли образованы 27 микротрубочками, сгруппированными по три; центриоли расположены перпендикулярно друг к другу. Образует полюса и веретено деления при митозе и мейозе.

 Вакуоли представляют собой участки гиалоплазмы, ограниченные элементарной мембраной. У растений содержат клеточный сок и поддерживают тургорное давление; у протистов выполняют пищеварительную и выделительную функции.

 Органеллы движения — это жгутики и реснички. Содержат по 20 микротрубочек, образующих девять пар по периферии и две одиночные в центре, покрыты элементарной мембраной. У основания находятся базальные тельца, образующие микротрубочки. Обеспечивают движение протистов, бактерий, сперматозоидов и ресничных червей. В дыхательных путях служат для удаления попавших инородных частиц.

 Включения. Это непостоянные компоненты цитоплазмы клетки, не выполняющие непосредственных функций в клетке, содержание которых изменяется в зависимости от функционального состояния клетки.

Трофические включения — запасы питательных веществ в клетке. В растительных клетках — это преимущественно крахмал и белки; в животных — гликоген и жир.

 Секреторные включения представляют собой продукты жизнедеятельности клеток желез внешней и внутренней секреции. К ним относятся ферменты, гормоны, слизь, подлежащие выведению из клетки.

 Экскреторные включения являются продуктами обмена веществ (кристаллы щавелевой кислоты, щавелевокислого кальция и др.).

 Строение и функции клеточного ядра

Клеточное ядро обязательный компонент всех эукариотических клеток. Содержит кариолемму (ядерную оболочку), кариоплазму (ядерный сок), хроматин и ядрышки.

Кариолемма представлена двумя биологическими мембранами; наружная ядерная мембрана непосредственно переходит в мембраны ЭПС; на ней имеются рибосомы. Между мембранами находится перинуклеарное пространство, сообщающееся с каналами ЭПС. В мембранах есть поры. Обеспечивает регуляцию обмена веществ между ядром и цитоплазмой.

Кариоплазма состоит из воды, минеральных солей, белков (ферментов), нуклеотидов, АТФ и различных видов РНК. Обеспечивает взаимосвязи между ядерными структурами.

 Хроматин образован дезоксинуклеопротеином (ДНП), содержащим молекулы ДНК, белки-гистоны и иРНК. Это деспирализованные хромосомы, образующие гранулы и глыбки. В профазах митоза и мейоза хроматин, спирализуясь, образует хромосомы.

Метафазные хромосомы состоят из двух продольных нитей ДНП — хроматид, соединенных друг с другом в области центромеры (первичной перетяжки). Центромера делит тело хромосомы на два плеча. Некоторые хромосомы имеют вторичную перетяжку, отделяющую от плеча спутник. На конце плеча имеются теломеры, препятствующие соединению разных хромосом.

Типы хромосом:

  • метацентрические — равноплечие;
  • субметацентрические — неравноплечие;
  • акроцентрические — одно плечо очень короткое.

 Ядрышки — шарообразные, не окруженные мембраной образования, состоящие из белков, рРНК и небольшого количества ДНК. Непостоянны. Образуются в области вторичных перетяжек хромосом (ядрышковых организаторов). В них формируются субъединицы рибосом.

Таблица «Строение и функции клетки».

Это конспект по теме «Строение и функции клетки». Выберите дальнейшие действия:

Источник: https://uchitel.pro/%D1%81%D1%82%D1%80%D0%BE%D0%B5%D0%BD%D0%B8%D0%B5-%D0%B8-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8-%D0%BA%D0%BB%D0%B5%D1%82%D0%BA%D0%B8/

Клетка человека: общие сведения

Клетка, — это базовая единица всего живого, кроме вирусов. Все остальные животные, растения, бактерии – всё состоит из клеток. Даже наши волосы и ногти построены из клеток, только отмерших.

Человеческий организм состоит, по самым скромным подсчётам, из 30 триллионов клеток. Для сравнения – на земле живёт всего 7 миллиардов людей. Вдумайтесь — каждый из нас состоит их грандиозного количества маленьких живых существ, которых в 4200 раз больше, чем людей на всей нашей планете!

При этом любая клетка, несмотря на крохотные размеры – штука вполне самостоятельная и ограничена от внешнего мира плотной, но эластичной стенкой-мембраной. Клетка рождается, живёт, питается, делится и умирает. Внутри её происходит собственный обмен веществ.

И, несмотря на крохотные размеры, клетка невероятно сложна. Клетка — если и не целый мир, то уж огромный биохимический завод – точно. Он состоит из отдельных «цехов» – органелл, обладающих определённой автономностью.

Строение клетки в разрезе

Даже одна из самых простых органелл – клеточная мембрана (по сути, обычная перегородка!) удивляет своей сложностью. И это позволяет ей выполнять десятки самых разных функций. А у митохондрий есть даже собственная ДНК! Это значит, что когда-то, в глубокой древности, они были самостоятельными организмами.

Клеточная мембрана — едва ли не простейший элемент клетки

Типы клеток и их внешний вид

Организм человека состоит из клеток самых разных типов. Они абсолютно разные. То есть, совершенно. Нервные клетки отличаются от клеток, скажем, кишечника, как небо и земля. Кстати, на самом деле нервных клеток тоже множество типов, и они мало похожи друг на друга.

Клетка Панета тонкой кишки. Обеспечивают антибактериальную защиту.

Нервная клетка типа Веретенообразный нейрон (иначе — нейроны фон Экономо). Служит для быстрой передачи информации.

Нервная клетка типа Клетка Пуркинье

Общее количество типов клеток в человеческом организме до сих пор точно не установлено, ведь учёные постоянно открывают всё новые и новые типы. Но только основных, базовых разновидностей клеток известно более 200, и это не считая подтипов.

Формы клеток совершенно различны – сферы, кубы, параллелепипеды, сложные многогранники нити, «кусты», и вообще бесформенные клетки, форму которых тяжело определить одним словом.

В общем, фантастическое разнообразие типов, форм, цветов и функций.

Да, человек, устроен сложно.

Продолжительность жизни клеток организма.
Смертные и бессмертные клетки.

Большинство клеток в организме на протяжении всей жизни человека возникают и отмирают, а на их место приходят новые. Это, условно говоря, смертные клетки.

Размножаются они обычным делением (митозом), а потому количество их не уменьшается, — на место отмерших приходят новые.

Так, клетки кишечника живут в среднем до 5 дней, клетки крови тромбоциты до 10 дней, эритроциты — 120 дней, клетки кожи от 10-ти до 30-ти, а печени – около 480 дней. То есть, за 80-летнюю жизнь человек полностью «меняет» кишечник почти 6000 раз, а печень – всего 60 раз.

Но есть клетки, способные жить более 100 лет. Их мы условно назовём «бессмертными». Их в организме меньше, чем «смертных», но всё равно число внушительное. Так, нейронов – клеток нервной системы, — не менее 85 миллиардов. Кроме них к бессмертным относятся и половые клетки, а также некоторые клетки мышц.

Несмотря на условное бессмертие, эти клетки вполне себе успешно гибнут от, скажем так, несчастных случаев. Но на их место всё равно приходят новые. Так, нейроны появляются из стволовых клеток, которые, образно говоря, являются «болванками», «заготовками» для производства новых клеток практически любого типа.

Они тоже бессмертны, поскольку могут делиться бесконечное количество раз. К условно-бессмертным относятся, увы, и раковые образования, также не имеющие предела деления.

Обычные же, «смертные» клетки могут делиться около 52-х раз, чуть больше или чуть меньше (число их возможных делений называется «пределом Хейфлика»).

Такая «несправедливость» связана, по всей видимости, с естественным процессом сокращения концевых участков т.н. теломеров (от др.-греч. τέλος – конец и μέρος — часть) – концевых участков хромосом. При каждом делении обычной клетки (а этих делений может быть плюс-минус 52), теломеры сокращаются. Когда они исчезают совсем, организм просто убивает клетку, поскольку считает её старой и ни на что негодной. Процесс «планового убийства» клеток носит название апоптоз.

При этом, однако, организм исправно снабжает «бессмертные» клетки (и раковые в том числе!) специальным ферментом – теломеразой, — который удлиняет теломеры и, таким образом, отменяет необходимость апоптоза.

Поэтому, к слову, рак так трудно победить. Для этого нужно запретить организму снабжать раковые образования теломеразой. Но как это сделать, мы пока не знаем.

Но узнаем обязательно.

Химический состав клетки

Он, естественно, различен для клеток разных типов, но в целом можно говорить об определённой выдержанности состава (но не содержаний конкретных элементов, которые значительно отличаются).

В состав клетки входит практически вся таблица Менделеева (кроме самых тяжёлых элементов) и плюс большое количество органических соединений. То есть, можно говорить о том, что в клетке есть практически всё, что есть в природе. В настоящий момент считается, что в составе клетки насчитывается около 90 химических элементов. 25 из них важны для нормального функционирования организма, а 18 – жизненно необходимы.

Неорганические вещества принято разделять на 4 группы:

Биоэлементы (иначе – органогены)

Элемент , %
Кислород 65-75
Углерод 15-18
Водород 8-10
Азот 2-3
Всего ок. 98%

Макроэлементы (иначе – минералы)

Элемент , %
Кальций 0,04-2,00
Фосфор 0,2-1,0
Калий 0,15-0,4
Сера 0,15-0,2
Хлор 0,05-0,1
Натрий 0,02-0,03
Магний 0,02-0,03
Железо 0,01-0,015
Всего до 1.98%

Микроэлементы (иначе – минералы)

Элемент , %
Цинк до 0,001
Медь до 0,001
Хром до 0,001
Ванадий до 0,001
Ванадий до 0,001
Германий до 0,001
Йод до 0,001
Марганец до 0,001
Кобальт до 0,001
Никель до 0,001
Селен до 0,001
Фтор до 0,001
Рутений до 0,001
Молибден до 0,001
Бор до 0,001
Всего до 0.02%

Ультрамикроэлементы

Элемент , %
Золото до 0,0000001
Серебро до 0,0000001
Платина до 0,0000001
Ртуть до 0,0000001
Цезий до 0,0000001
Бериллий до 0,0000001
Радий до 0,0000001
Уран до 0,0000001
и около 50-ти других
Всего менее 0.00001%

Органические вещества, состоящие, в свою очередь, из неорганических химических  элементов, в среднем составляют следующий проценты от общей массы клетки:

Вещество , %
Белки и аминокислоты 10-20
Жиры (липиды) 1-5  
Углеводы (моно-, ди- и полисахариды) 0,2-2,0
Нуклеиновые кислоты (биополимеры; в т.ч. ДНК и РНК) 1-2
Низкомолекулярные органические вещества, в т.ч. аденозинтрифосфат 0,1-0,5
Биологически активные вещества и ферменты ок. 0,1

Все элементы и вещества, входящие в состав клетки, выполняют одну, а чаще множество функций. Впрочем, назначение некоторых ультрамикроэлементов пока не установлено.

Питание клетки

Питанием клетки называется процесса захвата (иначе — интернализации) из внешней среды необходимых веществ, иногда в виде отдельных молекул химических элементов, иногда целых их групп (пищевых частиц). Практически все химические элементы, из которых состоят клетки, не синтезируются организмом и должны поступать извне.

Чтобы клетка смогла захватить нужные вещества, они должны предварительно поступить в т.н. внеклеточный матрикс – субстанцию, заполняющую пространство между клетками. К матриксу причисляют также плазму крови и лимфатическую жидкость.

Молекулы гиалуроновой кислоты (красно-оранжевые) во внеклеточном матриксе

В состав матрикса входят коллаген, фибрин, эластин, гликопротеины, протеогликаны, гиалуроновая кислота, а также, в меньшем количество, фибронектины, ламинины и нидогены. Естественно, матрикс сам нуждается в «строительном материале» для своих компонентов, которые также должны привноситься извне.

Есть два принципиально разных способа использования клеткой полученного питания. Первый из них – ассимиляция — подразумевает, что молекулы питательных веществ захватываются и либо напрямую усваиваются клеткой, либо используются ей для построения других нужных её молекул. Второй – диссимиляция (или клеточное дыхание) – заключается в преобразовании полученных веществ в энергию, необходимую для выполнения различных функций.

Клетка не только питается, но и выводит остатки своей жизнедеятельности. И также через мембрану, откуда они выводятся дальше, через лимфатическую и другие системы организма. То есть, клетка, подобно человеку, имеет настоящую пищеварительную систему.

Естественно предположить, что нормальное «пищеварение» клеток — основа здоровья организма в целом. Поэтому, формируя рацион питания, мы должны думать не о том, как насытить свой желудок, а о том, как предоставить всем клеткам нужное им питание. А это, как мы уже установили, не более и не менее, как 90 химических элементов. И если с биоэлементами обычно никаких проблем нет, то на уровне макроэлементов уже начинаются трудности.

Одних поступает больше, других меньше, третьи отсутствуют совсем. С микроэлементами дело обстоит ещё хуже. Человеческий организм имеет колоссальный ресурс для выживания даже при самом отвратительном питании (например, как у тибетских монахов), но речь идёт именно о выживании, а не полноценной жизни и, тем более, расширении его возможностей. Поэтому учёные поднимают вопрос полноценного питания клеток встаёт всё чаще.

Он обязательно должен быть решён каждым из нас как можно раньше и полнее.

ЭТО ИНТЕРЕСНО:  Как управлять климат контролем

Клеточное питание – это как раз об этом.

Источник: https://kletochnoe-pitanie.com/cell-nutrition/human-cell/

Строение клетки человека — рисунок с подписями, функции, как устроена, размер

Опубликовал Admin — Октябрь 28th, 2019

Человек живой организм, существование которого зависит от работы объединённых вместе жизненно — важных систем. Системы представлены функциональными органами. Но самыми минимальными организованными единицами организма будут – клетки.  Клетки в свою очередь собираются по своему назначению в ткани.

:

Если рассматривать одну единственную клетку, то она представляет собой в некотором роде самостоятельный «организм». Она питается, дышит и даже сжимается, меняя свое состояние. Питанием для клетки служат молекулы вещества (белки, жиры, углеводы), в организме они разлагаются и заново складываются в нужные вещества, ферменты.

Различие прокариотической и эукариотической клетки

Клетки бывают прокариотические и эукариотические. Главное различие, чем клетки прокариот отличаются от клеток эукариот – это количество генетического материала.

В первых содержится всего одна хромосома и такой тип присущ растениям. Во втором типе каждая клетка имеет более сложное строение – ядро, ядрышки и генетический материал, упакованный в хромосомы.

Строение и функции органоидов эукариотической клетки

Рассмотрим строение животной клетки, общее строение которой присуще всем живым существам.

Вся клетка представляет собой клеточную мембрану, а её органеллы (внутренние структуры клетки) отдельными или прикрепленными к ней складчатыми образованиями. Внутри них сосредоточены функциональные центры живой клетки.

Как устроена мембрана клетки?

Цитоплазматическая мембрана – это оболочка, которая отделяет каждую клетку от внеклеточного пространства и вам, конечно же, интересно, из чего состоит плазматическая мембрана клетки? Она состоит из двух слоев фосфолипидов и гликолипидов.

Эти молекулы имеют полярный конец (который присоединять другие молекулы и атомы) и являются гидрофильным концом. Эта часть соприкасается с межклеточной средой и плазмой клетки. Концы из неполярных липидов (гидрофобный) образуют двойной внутренний слой клеточной мембраны.

Также в оболочку встроены крупные молекулы белка, которые выполняют роль открывающихся пор, электролитных каналов и присоединительных механизмов. Такая молекула белка проходит насквозь через би-липидный слой. На поверхности имеются также нити гликокаликса. Оболочка может иметь складки, шероховатости и выпуклости, отростки наподобие жгутиков.

Виды тканей человека и их функции

Ткани – это объединение группы клеток по своему назначению (функции). Из тканей сформированы органы. Некоторые органы состоят из одного и того же типа клеток (например, сердечная мышца и скелетная мышца). Некоторые клетки имеют высокую степень пролиферации (то есть преумножение путем деления), под действием гормонов, например.

Другие же при созревании теряют возможность к делению или мутации – нервные клетки, клетки крови.

Виды органической ткани:

  • Эпителий – выполняет покровную функцию, из неё образован наружный покров – кожа, слизистые, мягкие ткани. Образует внешнюю капсулу некоторых органов.
  • Соединительная – хрящевая, жировая, костная.
  • Мышечная – ей образованы все типы мышц, выполняет двигательную, сократительную функцию.
  • Нервная – состоит из нервных клеток(нейронов). Обеспечивает связь органов и тканей с мозгом, по средству электрических импульсов.

Размер клеток

Размер органической клетки составляет от 5 до 6 микрон (1мкм – 0.001 мм), в зависимости от типа и назначения. О существование некоторых из них было неизвестным до изобретения микроскопа. Некоторые клетки можно полностью рассмотреть и с помощью обычного школьного микроскопа (луковая кожица, сине-зеленые водоросли), а некоторые и невооружённым глазом (например, яйцеклетка курицы, икринка рыбы).

И существуют совсем гигантских размеров (растения рами, одноклеточная ацетобулярия). Достигают до 100-200 мм.

Какую функцию выполняет в клетке хромосома?

Каждая клетка внутри себя хранит свой генетический код, по которому она в точности может произвести саму себя, либо органические белки – ферменты, соответствующие другим клеткам человеческого организма. У каждого вида животного и растения присутствует постоянное число хромосом, у человека их 23 пары и сейчас мы подробнее разберем, как устроены и из чего состоят хромосомы.

Хромосомы – это плотные и толстые нити хроматина, которые скручены в спирали – ДНК, основой для их формирования являются специальные гистоновые белки. Нити ещё называют хроматидами. В неделящейся клетке хроматин образует рыхлую, нечеткую пространственную структуру, который заполняет ядро. Его существенно меньше, чем на момент деления. ДНК – молекулы очень длинные, информация об организме и клетке постоянно записывается.

Каждый участок ДНК – это нуклеотид, который имеет в своем составе азотистое основание, сахара и группу фосфатов. Последовательные участки ДНК составляют – раскрученную полимолекулярную нить.

Перед самым делением хроматина становиться больше. Нити ДНК скручиваются, укорачиваются в спираль и упаковываются в хромосомы. Хромосома представляет собой тело из двух толстых нитей с перемычкой посередине – центромером. Концы нитей называются — плечи. Имеются два коротких и два длинных плеча.

Во время деления оболочка ядра пропадает, хроматин удваивается и занимает почти все пространство клетки. Затем с помощью специальных белков, центриолей и микротрубочек в центре клетки образуется веретено деления, к которому прикрепляются перетяжками сестринские хромосомы.

К каждой дочерней клетки отходит поделенная часть хромосом.

Митохондрии – особенности строения и функции

Митохондрия – это эллипсовидная органелла клетки. Снаружи имеет вид капсулы, которая состоит из двух оболочек. Внешняя – гладкая, внутренняя имеет многочисленные складки – кристы. Пространство митохондрии наполнено жидкостью, внутри находятся также рибосомы и части ДНК.

Митохондрии считаются энергетическими станциями клетки. За счет процессов окисления органических веществ образуются молекулы АТФ. При создании или распаде такой молекулы происходят большие затраты (выбросы) энергии. Синтезируя или разрывая эту связь, клетка обеспечивает себя энергией. Цикл окисления может происходить бесконечно.

Ядро клетки – строение и функции

Ядро – наиболее важная и центральная её часть и не многие из вас знают, какие функции выполняет в клетке ядро. Оно является носителем генетического материала. Некоторые клетки теряют свое ядро при созревании (например, эритроциты) и далее не имеют способности к делению. Ядерная оболочка образована в два слоя, проницаемая для питательных веществ и освобождения через неё образованных рибосом.

Само ядро заполнено плазмой – светлой вязкой жидкостью, в плазме находиться более темные ядрышки и хроматин. Ядрышки участвуют в сборке РНК, а также синтезе рибосом.

Центросома – строение и функции

Клеточное тельце, которое обычно располагается поближе к ядру. В состоянии деления является организующим фактором для микротрубочек, образующих веретено деления.

Центросома состоит из 3 частей:

  • Диплосома – состоит из двух цилиндрических структур – центриолей, которые располагаются друг к другу под прямым углом.
  • Центросфера – полупрозрачная жидкость, в которую погружены центриоли.
  • Астер – тоненькие нити, которые отходят лучами из центросферы.

Комплекс Гольджи и лизосомы

Состоит из 5-10 замкнутых плоских клеточных цистерн — диктиосомы, образованных мембранными складками — мешочками. Они располагаются стопкой. Вокруг цистерн собраны разного размера пузырьки – лизосомы.

Внутри цистерн происходит модификация веществ, транспортируемых из эндоплазматического ретикулума: расщепление, фосфорилирование, присоединение частей молекул. Далее готовые вещества отщепляются от аппарата Гольджи в виде пузырьков – лизосом. И могут сливаться уже с готовыми пузырьками.

Однако вы спросите, какую функцию выполняют в клетке лизосомы? Лизосома считается частью пищеварительной системы клетки, в ней содержится кислота, пищеварительные гидролазы. Внутренняя оболочка лизосомы имеет слой мукополисахаридов, оберегающий её от саморазрушения. Лизосомы могут выделять свои ферменты внутрь клетки.

Рибосомы – особенности строения и функции

Рибосомы – круглые, сферические образования – органеллы клетки. Они оседают на мембранных складках эндоплазматической сети. Рибосомы – это нуклеопиптиды, которые участвуют в синтезе белков (из поступивших аминокислот) по заданной генетической матрице.

Рибосома состоит из трех субъединиц:

  • Большая – содержит 45 молекул белка и 3 РНК
  • Маленькая – 33 молекулы белка и 1 РНК.

Рибосомы объединяются в более крупное скопление – полисому, для трансляции и сборки белка.

Цитоплазма – особенности строения и функции

Цитоплазма – вязкая жидкость — гиалоплазма, которой заполнена внутри клетка. В неё погружены все органеллы клетки, в том числе ядро. В ней находятся растворенные белки, углеводы, жиры. Электролитный баланс поддерживается содержанием иона калия и натрия, которые свободно проходят через поры в мембране. В жидкой среде перемещаются незакрепленные органеллы.

Третью часть цитоплазмы образует вода, около 30% содержания состоит из органических веществ и около 2-3% неорганические.

Цитоплазма, как наполнение клетки не несет какой-то особой функции. Скорее это общая среда для самых разных процессов – пищеварения, растворения, образование энергии, выделение веществ.

Эндоплазматический ретикулум – строения и функции

Эндоплазматический ретикулум– это сеть складок, кармашков, трубочек, образованных из клеточной оболочки. Он развился путем самоврастания мембраны внутрь — это требовалось в ходе развития живых существ.

Стенки складчатого лабиринта ЭПР по своему строению полностью совпадают со строением ядерной оболочки и плотно к ней примыкает. Мембрана открывается во внутренний слой ядерной мембраны. Обеспечивает транспорт рибосом из ядрышек, а также участвует в обмене веществ между ядром, клеткой и внешней средой.

ЭПР имеет функцию синтеза и накопления веществ – липидов, белков, кальция. Так же поставке стероидов и гормонов. Можно отметить накопительную функцию печени(гликогена), половых клеток, надпочечников.

Источник: http://wjday.ru/kletka-cheloveka.html

Клеточное строение человека — состав, функции, свойства и размножение клетки (Таблица)

Клетка — элементарная живая система, основная структурная и функциональная единица организма, способная к самообновлению, саморегуляции и самовоспроизведению.

Жизненные свойства клетки человека

К основным жизненным свойствам клетки относят: обмен веществ, биосинтез, размножение, раздражимость, выделение, питание, дыхание, рост и распад органических соединений.

Химический состав клетки

Основные химические элементы клетки: Кислород (О), Сера (S), Фосфор (Р), Углерод (С), Калий (К), Хлор (Сl), Водород (Н), Железо (Fe), Натрий (Na),  Азот (N), Кальций (Са), Магний (Mg)

Неорганические вещества Органические вещества
1. Вода — растворяет и переносит питательные вещества. Вода — универсальный растворитель. Все реакции идут в растворах. Вода обеспечивает перенос необходимых веществ и выделение вредных продуктов. Вода участвует в регуляции температуры тела и состовляет 70-85% от всего химического состава клетки.2. Минеральные соли участвуют в образова­нии жизненно важных соединений (напри­мер, белка крови — ге­моглобина) — Углеводы;- Жиры;- Белки;- Нуклеиновые кислоты- АТФ

Органические вещества клетки 

Название веществ Из каких эле­ментов (веществ) состоят Функции веществ
Углеводы Углерод, водо­род, кислород. Основные источники энергии для осуществления всех жиз­ненных процессов.
Жиры Углерод, водо­род, кислород. Входят в состав всех клеточных мембран, служат запасным ис­точником энергии в организме.
Белки Углерод, водород, ки­слород, азот, сера, фосфор. 1. Главный строительный материал клетки;2. ускоряют течение химических реакций в организме;

Источник: https://infotables.ru/biologiya/39-biologiya-chelovek/211-kletochnoe-stroenie-cheloveka

Анатомия человека. Строение клетки

Клетки делятся на прокариотические и эукариотические. Первые — это водоросли и бактерии, которые содержат генетическую информацию в одной единственной органелле, — хромосоме, а эукариотические клетки, составляющие более сложные организмы, такие как человеческое тело, имеют четко дифференцированное ядро, в котором находится несколько хромосом с генетическим материалом.

Клеточная или цитоплазматическая мембрана

Цитоплазматическая мембрана (оболочка) — это тонкая структура, которая отделяет содержимое клетки от окружающей среды. Она состоит из двойного слоя липидов с белковыми молекулами толщиной примерно 75 ангстрем.

Клеточная мембрана сплошная, но у нее имеются многочисленные складки, извилины, и поры, что позволяет регулировать прохождение через нее веществ.

Клетки, ткани, органы, системы и аппараты

Клетки, Человеческий организм — слагаемое элементов, которые слаженно действуют, чтобы эффективно выполнять все жизненные функции.

Ткань — это клетки одинаковой формы и строения, специализированные на выполнении одной и той же функции. Различные ткани объединяются и образуют органы, каждый из которых выполняет конкретную функцию в живом организме. Кроме того, органы также группируются в систему для выполнения определенной функции.

Ткани:

Эпителиальная — защищает и покрывает поверхность тела и внутренние поверхности органов.

Соединительная — жировая, хрящевая и костная. Выполняет различные функции.

Мышечная — гладкая мышечная ткань, поперечнополосатая мышечная ткань. Сокращает и расслабляет мышцы.

Нервная — нейроны. Вырабатывает и передает и принимает импульсы.

Размер клеток

Величина клеток очень разная, хотя в основном она колеблется от 5 до 6 микронов (1 микрон = 0,001 мм). Этим объясняется тот факт, что многие клетки не могли рассмотреть до изобретения электронного микроскопа, разрешающая способность которого составляет от 2 до 2000 ангстрем (1 ангстрем = 0,000 000 1 мм).Размер некоторых микроорганизмов меньше 5 микрон, но есть и клетки-гиганты. Из наиболее известных — это желток птичьих яиц, яйцеклетка размером около 20 мм.

Есть еще более поразительные примеры: клетка ацетабулярии, морской одноклеточной водоросли, достигает 100 мм, а рами, травянистого растения, — 220 мм — больше ладони.

От родителей к детям благодаря хромосомам

Ядро клетки претерпевает различные изменения, когда клетка начинает делиться: исчезают оболочка и ядрышки; в это время хроматин становится более плотным, образуя в итоге толстые нити — хромосомы. Хромосома состоит из двух половин — хроматид, соединенных в месте сужения (центрометр).

Наши клетки, так же как и все клетки животных и растений, подчиняются так называемому закону численного постоянства, согласно которому число хромосом определенного вида постоянно.

Кроме того, хромосомы распределяются парами, идентичными между собой.

В каждой клетке нашего тела имеется 23 пары хромосом, представляющих собой несколько удлиненных молекул ДНК. Молекула ДНК принимает форму двойной спирали, состоящей из двух групп сахарофосфата, откуда в виде ступенек винтовой лестницы выступают азотистые основы (пурины и пирамидины).

Вдоль каждой хромосомы располагаются гены, ответственные за наследственность, передачу генных признаков от родителей к детям. Именно они определяют цвет глаз, кожи, форму носа и т. д.

Митохондрии

Митохондрии — это органеллы округлой или удлиненной формы, распределенные по всей цитоплазме, содержащие водянистый раствор ферментов, способные осуществлять многочисленные химические реакции, например клеточное дыхание.

С помощью этого процесса высвобождается энергия, которая необходима клетке для выполнения ее жизненных функций. Митохондрии находятся в основном в наиболее активных клетках живых организмов: клетках поджелудочной железы и печени.

Ядро клетки

Ядро, одно в каждой человеческой клетке, является ее основным компонентом, так как это организм, управляющий функциями клетки, и носитель наследственных признаков, что доказывает его важность в размножении и передаче биологической наследственности.

В ядре, размер которого колеблется от 5 до 30 микрон, можно различить следующие элементы:

  • Ядерная оболочка. Она двойная и позволяет веществам проходить между ядром и цитоплазмой благодаря своей пористой структуре.
  • Ядерная плазма. Светлая, вязкая жидкость, в которую погружены остальные ядерные структуры.
  • Ядрышко. Сферическое тельце, изолированное или в группах, участвующее в образовании рибосом.
  • Хроматин. Вещество, которое может принимать различную окраску, состоящее из длинных нитей ДНК (дезоксирибонуклеиновой кислоты). Нити представляют собой частицы, гены, каждый из которых содержит информацию об определенной функции клетки.
ЭТО ИНТЕРЕСНО:  Как разобрать зеркало форд фокус 3

Ядро типичной клетки

Клетки кожи живут в среднем одну неделю. Эритроциты живут 4 месяца, а костные клетки — от 10 до 30 лет.

Центросома

Центросома обычно находится рядом с ядром и играет важнейшую роль в митозе, или клеточном делении.

Она состоит из 3 элементов:

  • Диплосома. Состоит из двух центриол — цилиндрических структур, расположенных перпендикулярно.
  • Центросфера. Полупрозрачное вещество, в которое погружена диплосома.
  • Астер. Лучистое образование из нитей, выходящих из центросферы, имеющее важное значение для митоза.

Комплекс Гольджи, лизосомы

Комплекс Гольджи состоит из 5-10 плоских дисков (пластин), в котором различают основной элемент — цистерну и несколько диктиосом, или скопление цистерн. Эти диктиосомы разъединяются и распределяются равномерно во время митоза, или деления клетки.

Лизосомы, «желудок» клетки, образуются из пузырьков комплекса Гольджи: они содержат пищеварительные ферменты, которые позволяют им переваривать пишу, поступающую в цитоплазму. Их внутренняя часть, или микус, выстлана толстым слоем полисахаридов, которые препятствуют тому, чтобы эти ферменты разрушили собственный клеточный материал.

Рибосомы

Рибосомы — это клеточные органеллы диаметром около 150 ангстрем, которые прикреплены к оболочкам эндоплазматического ретикулума или свободно размещаются в цитоплазме.

Они состоят из двух подъединиц:

  • большая подъединица состоит из 45 молекул белка и 3 РНК (рибонуклеиновой кислоты);
  • меньшая подъединица состоит из 33 молекул белка и 1 РНК.

Рибосомы объединяются в полисомы с помощью молекулы РНК и синтезируют белки из молекул аминокислот.

Цитоплазма

Цитоплазма — это органическая масса, расположенная между цитоплазматической мембраной и оболочкой ядра. Содержит внутреннюю среду — гиалоплазму — вязкую жидкость, состоящую из большого количества воды и содержащую белки, моносахариды и жиры в растворенном виде.

Она является частью клетки, наделенной жизненной активностью, потому что внутри нее двигаются различные клеточные органеллы и происходят биохимические реакции. Органеллы выполняют в клетке ту же роль, что и органы в человеческом теле: производят жизненно важные вещества, генерируют энергию, выполняют функции пищеварения и выведения органических веществ и т. д.

Примерно треть цитоплазмы составляет вода.

Кроме того, в цитоплазме содержится 30% органических веществ (углеводов, жиров, белков) и 2-3% неорганических веществ.

Эндоплазматический ретикулум

Эндоплазматический ретикулум — это структура в виде сети, образованная заворачиванием цитоплазматической оболочки в саму себя.

Считается, что этот процесс, известный как инвагинация, привел к появлению более сложных существ с большими потребностями в белках.

В зависимости от наличия или отсутствия рибосом в оболочках различают два типа сетей:

1. Эндоплазматический ретикулум складчатый. Совокупность плоских структур, соединенных между собой и сообщающихся с ядерной мембраной. К ней прикреплено большое количество рибосом, поэтому ее функция заключается в накоплении и выделении белков, синтезированных в рибосомах.

2. Эндоплазматический ретикулум гладкий. Сеть из плоских и трубчатых элементов, которая сообщается со складчатым эндоплазматическим ретикулумом. Синтезирует, выделяет и переносит жиры по всей клетке, вместе с белками складчатого ретикулума.

rusmedserver.ru

Хотите читать всё самое интересное о красоте и здоровье, подпишитесь на рассылку!

Источник: https://doctor.kz/health/news/2012/12/04/14276

Клетка человека ее строение и функции: таблица, особенности устройства и что такое клеточный центр

Все живые существа и организмы на Земле состоят из клеток: растения, грибы, бактерии, животные, люди. Несмотря на минимальный размер, все функции целого организма выполняет клетка. Внутри нее протекают сложные процессы, от которых зависит жизнеспособность тела и работа его органов.

Структурные особенности

Учёные занимаются изучением особенности строения клетки и принципов ее работы. Детально рассмотреть особенности структуры клетки можно только при помощи мощного микроскопа.

Все наши ткани — кожные покровы, кости, внутренние органы состоят из клеток, которые являются строительным материалом, бывают разных форм и размеров, каждая разновидность выполняет определённую функцию, но основные особенности их строения сходны.

Сначала выясним, что лежит в основе структурной организации клеток. В ходе проведенных исследований ученые установили, что клеточным фундаментом является мембранный принцип. Получается, что все клетки образованы из мембран, которые состоят из двойного слоя фосфолипидов, куда с наружной и внутренней стороны погружены молекулы белков.

Какое свойство характерно для всех типов клеток: одинаковое строение, а также функционал — регулирование процесса обмена веществ, использование собственного генетического материала (наличие ДНК и РНК), получение и расход энергии.

В основе структурной организации клетки выделяются следующие элементы, выполняющие определенную функцию:

  • мембрана — клеточная оболочка, состоит из жиров и протеинов. Ее основная задача – отделять вещества, находящиеся внутри, от внешней среды. Структуру имеет полупроницаемую: способна пропускать кислород и оксид углерода;
  • ядро – центральная область и главный компонент, отделяется от других элементов мембраной. Именно внутри ядра находится информация о росте и развитии , генетический материал, представленный в виде молекул ДНК, входящих в состав хромосом;
  • цитоплазма — это жидкая субстанция, образующая внутреннюю среду, где происходят разнообразные жизненно важные процессы, содержит в себе очень много важных компонентов.

Из чего состоит клеточное содержимое, каковы функции цитоплазмы и ее основных компонентов:

  1. Рибосома — важнейший органоид, который необходим для процессов биосинтеза белков из аминокислот, белки выполняют огромное количество жизненно важных задач.
  2. Митохондрии – ещё один компонент, находящийся внутри цитоплазмы. Его можно описать одним словосочетанием – энергетический источник. Их функция заключается в обеспечении компонентов питанием для дальнейшего производства энергии.
  3. Аппарат Гольджи состоит из 5 – 8 мешочков, которые соединены между собой. Основная задача этого аппарата – передача протеинов в другие части клетки для обеспечения энергетического потенциала.
  4. Очистку от повреждённых элементов производят лизосомы.
  5. Транспортировкой занимается эндоплазматическая сеть, по которой белки перемещают молекулы полезных веществ.
  6. Центриоли отвечают за воспроизводство.

Клеточная мембрана

Давайте подробнее рассмотрим работу, строение и функции этого компонента. Ниже представлена таблица, наглядно показывающая важность внешней оболочки.

Название органоида Строение органоида Функции органоида
Наружная клеточная мембрана Очень тонкая плёнка, которая состоит из двух молекулярных слоев белка, а также из слоя липидов. Также присутствуют поры, через которые могут проникать некоторые вещества Мембрана отделяет клетку от внешней среды, но обладает полупроницаемостью. Регулирует поступление веществ в клетку, и обеспечивает обмен веществ между клеткой и окружающей средой.

Хлоропласты

Это ещё один наиважнейший компонент. Но почему о хлоропластах не было упомянуто раньше, спросите вы. Да потому, что этот компонент содержится только в клетках растений. Главное различие между животными и растениями заключается в способе питания: у животных оно гетеротрофное, а у растений автотрофное.

Это означает, что животные не способны создавать, то есть синтезировать органические вещества из неорганических – они питаются готовыми органическими веществами. Растения же, напротив, способны осуществлять процесс фотосинтеза и содержат особые компоненты — хлоропласты. Это пластиды зеленого оттенка, содержащие вещество хлорофилл.

С его участием энергия света преобразуется в энергию химических связей органических веществ.

Интересно! Хлоропласты в большом объеме сосредоточены главным образом в надземной части растений — зелёных плодах и листьях.

Если вам зададут вопрос: назовите важную особенность строения органических соединений клетки, то ответ можно дать следующий.

  • многие из них содержат атомы углерода, которые обладают различными химическими и физическими свойствами, а также способны соединяться друг с другом;
  • являются носителями, активными участниками разнообразных процессов, протекающих в организмах, либо являются их продуктами. Имеются ввиду гормоны, разные ферменты, витамины;
  • могут образовывать цепи и кольца, что обеспечивает многообразие соединений;
  • разрушаются при нагревании и взаимодействии с кислородом;
  • атомы в составе молекул объединяются друг с другом с помощью ковалентных связей, не разлагаются на ионы и потому медленно взаимодействуют, реакции между веществами протекают очень долго — по нескольку часов и даже дней.

Ткани

Клетки могут существовать по одной, как в одноклеточных организмах, но чаще всего они объединяются в группы себе подобных и образуют различные тканевые структуры, из которых и состоит организм. В теле человека существует несколько видов тканей:

  • эпителиальная – сосредоточена на поверхности кожных покровов, органов, элементов пищеварительного тракта и дыхательной системы;
  • мышечная — мы двигаемся благодаря сокращению мышц нашего тела, осуществляем разнообразные движения: от простейшего шевеления мизинцем, до скоростного бега. Кстати, биение сердца тоже происходит за счёт сокращения мышечной ткани;
  • соединительная ткань составляет до 80 процентов массы всех органов и играет защитную и опорную роль;
  • нервная — образует нервные волокна. Благодаря ей по организму проходят различные импульсы.

Процесс воспроизводства

На протяжении всей жизни организма происходит митоз – так называют процесс деления, состоящий из четырёх стадий:

  1. Профаза. Две центриоли клетки делятся и направляются в противоположные стороны. Одновременно с этим хромосомы образуют пары, а оболочка ядра начинает разрушаться.
  2. Вторая стадия получила название метафазы. Хромосомы располагаются между центриолями, постепенно внешняя оболочка ядра полностью исчезает.
  3. Анафаза является третьей стадией, на протяжении которой продолжается движение центриолей в противоположном друг от друга направлении, а отдельные хромосомы также следуют за центриолями и отодвигаются друг от друга. Начинает сжиматься цитоплазма и вся клетка.
  4. Телофаза – окончательная стадия. Цитоплазма сжимается до тех пор, пока не появятся две одинаковые новые клетки. Формируется новая мембрана вокруг хромосом и появляется одна пара центриолей у каждой новой клетки.

Интересно! Клетки у эпителия делятся быстрее, чем у костной ткани. Все зависит от плотности тканей и других характеристик. Средняя продолжительность жизни основных структурных единиц составляет 10 дней.

Строение клетки

https://www.youtube.com/watch?v=Dfrki6Om1F4

Строение клетки. Строение и функции клетки. Жизнь клетки.

Вывод

Вы узнали каково строение клетки — самой важной составляющей организма. Миллиарды клеток составляют удивительно мудро организованную систему, которая обеспечивает работоспособность и жизнедеятельность всех представителей животного и растительного мира.

Источник: https://uchim.guru/biologiya/kletka-cheloveka-stroenie-i-funktsii.html

Человеческая клетка: строение клетки человека

Подробно рассмотрев в микроскоп элементарную единицу нашего организма, исследователи пришли к выводу, что человеческая клетка имеет весьма сложное внешнее и внутреннее строение. Наше тело состоит из мышечной ткани, которую составляют в основном микроскопические клетки.

Строение клетки человека во многом ничем не отличается от строения растительной и животной клеток. Разница имеется лишь в некоторых уникальных функциях органоидов клетки и в месте их расположения. Кстати, подробно прочитать о строении клеток растений можно тут.

О строении клеток животных тут.

Основные органоиды человеческой клетки

Клетка человека имеет своеобразную форму. Эта форма определяет месторасположение определенных клеточных органоидов. Человек – эукариотический организм, именно поэтому в центре его клетки находится ядро. Как и в растительной и животной клетке, в человеческой клетке ядро выполняет такую же функцию хранения и реализации генетической информации.

Имеется в клетке человека и цитоплазма, которая являет собой определенную среду расположения всех клеточных органелл. Митохондрии обеспечивают в клетке все энергетические процессы, связанные с окислением углеводов и жирных кислот. Особенностью человеческой клетки является наличие в ней многих ферментов, большинство из которых расположены в лизосомах.

Ферменты внутри клетки выполняют функцию катализатора, то есть с их помощью значительно ускоряется протекание химических реакций в клетке.

Все строение клетки человека базируется на клеточной мембране. Она обеспечивает целостность формы клетки, а также способна практически полностью регулировать внутриклеточный баланс. Важную роль в клетке человека играют рибосомы. Как и во всех живых организмах, в человеке рибосомы служат основным органоидом для синтеза молекул белка, который возможен только из аминокислот.

Эндоплазматический ретикулум – один из главных органоидов клетки человека

Человеческая клетка имеет в своем строении два типа эндоплазматического ретикулума: гладкий и складчатый. Он являет собой определенную систему канальцев, пузырьков и уплощенных полостей, которые со всех сторон окружены прочной мембраной.

Гладкий и складчатый эндоплазматический ретикулум выполняют разные функции в клетке. Первый участвует во многих процессах клеточного метаболизма.

Более того, гладкий эндоплазматический ретикулум имеет способность нейтрализовать многие виды природных ядов, он берет участие в углеводном обмене и способен влиять на запасание клеткой кальция.

функция складчатого эндоплазматического ретикулума – синтез белков. Этот процесс напрямую связан с деятельностью рибосом, поэтому самостоятельного синтеза белков складчатый эндоплазматический ретикулум проводить не может.

Дело в том, что когда белки синтезируются на поверхности рибосом, они случайным образом могут присоединиться к складчатому эндоплазматическому ретикулуму. В такой способ создаются полипептидные цепочки, которые размещаются в полостях складчатого эндоплазматического ретикулума.

В конце процесса эти белковые цепочки внутри органоида сворачиваются, проходят целый цикл биохимических превращений и потом в свободном виде белки попадают в состав цитозоля, где используются клеткой.

Таким образом, строение клетки человека практически полностью совпадает со строением клеток других живых организмов. Однако человек – уникальное существо, которое сумело добиться наивысшего уровня развития. Может поэтому стоит и дальше изучать строение нашего организма? Ведь ответ на вопрос о том, почему именно вид Homo sapiens сумел выбраться на наивысшую ступень эволюционного развития, до сих пор не найден.

Сложное строение человеческой клетки — видео

Источник: https://life-students.ru/stroenie-kletki-cheloveka/

Строение клетки человека, деление клетки и внешний вид, описание с картинками для детей

Клетки – это микроскопические живые элементы, из которых, как здание из кирпичиков, состоит человеческое тело. Их очень много – для образования организма новорожденного клеток требуется около двух триллионов!

Клетки бывают различных типов или видов, например, нервные клетки или клетки печени, но каждая из них содержит информацию, необходимую для возникновения и нормальной работы организма человека.

Строение клетки человека

Строение всех клеток тела человека практически одинаково. Каждая живая клетка состоит из защитной оболочки (она называется мембраной), которая окружает желеобразную массу – цитоплазму. В цитоплазме плавают мелкие органы или компоненты клетки – органеллы, и содержится «командный пункт» или «центр управления» клетки – её ядро. Именно в ядре заключена информация, необходимая для нормальной жизнедеятельности клетки и «инструкции», на выполнении которых основана её работа.

Деление клеток

Ежесекундно организм человека обновляется, в нём отмирают и рождаются, замещая друг друга, миллионы клеток. Например, замещение старых клеток кишечника новыми происходит со скоростью миллион в минуту.

Каждая новая клетка возникает в результате деления уже существующей, и процесс этот можно разделить на три этапа:1.    Перед началом деления клетка копирует содержащуюся в ядре информацию;2.    Потом на две части делится ядро клетки, а затем цитоплазма;

3.

    В результате деления получаются две новые клетки, являющиеся точными копиями клетки-матери.

Виды и внешний вид клеток человеческого организма

Несмотря на одинаковое строение, клетки человека отличаются по форме и размеру, в зависимости от функций, которые они выполняют. С помощью электронного микроскопа учёные выяснили, что клетки могут иметь форму параллелепипеда (например, клетки эпидермиса), шара (кровяные), звёздочки и даже проводов (нервные), а всего их около 200 видов.

Источник: http://www.vseznayem.ru/pochemuchki-o-cheloveke/275-stroyeniye-kletki-cheloveka

Понравилась статья? Поделиться с друзьями:
Школа авторемонта
Почему руль тянет влево

Закрыть