Что поддерживает форму клетки

От чего зависит форма клеток? Формы клеток

что поддерживает форму клетки
Образование 21 февраля 2017

Сегодня мы разберем вопрос: «От чего зависит форма клеток?». Для начала заметим, что наше тело полностью состоит из отдельных клеточек. Все наши и внутренние, и внешние органы – это конструктор, составляющие части которого – маленькие клеточки, которые мы можем рассмотреть только под микроскопом.

От чего зависит форма клеток? Здесь можно выделить целый ряд факторов, которые мы перечислим немного позже. Для начала нам предстоит познакомиться со структурой (строением) клетки. Важно знать и то, что все их можно разделить на группы:

  • растительные;
  • животные;
  • клетки бактерий.

Мы рассмотрим каждый вид отдельно.

Клетка

Все живое вокруг нас состоит из клеток, которые представляют собой полость, окруженную мембраной. Это полое пространство заполнено водным и концентрированным раствором, основа которого – вода.

Так мы можем утверждать: клетка – это элементарная единица, они могут не только образовывать нечто большее, но и существовать самостоятельно. Они обладают рядом возможностей, таких как:

  • обмен веществ;
  • существование самостоятельно;
  • самовоспроизведение;
  • развитие.

Важно знать, что они могут иметь разную форму и размеры. От чего зависит форма клеток, мы обязательно разберем после ознакомления с их строением. Клетка, как и все живое на нашей планете, эволюционирует, мы не будем говорить о самом процессе преобразования, а рассмотрим уже современный результат.

Строение

Несмотря на то, что формы клеток, размеры и предназначения могут быть разнообразны, они имеют довольно схожее строение. Выделим общие структурные единицы:

  • клеточная мембрана;
  • цитоплазма;
  • ядро.

То есть можно выделить три структурные единицы, которые можно встретить в большинстве случаев. Однако есть и исключения. Возьмем мышцы, ее клетки состоят из мембраны, цитоплазмы и нескольких ядер.

Сейчас мы рассмотрели пример, когда наблюдается в одной клетке множество ядер, но есть и полное их отсутствие. Примером второго варианта может быть эритроцит.

Последние не обладают таким количеством функций и возможностей, так как нет возможности самообновляться и воспроизводиться (потому что наблюдается отсутствие ядра).

Важно знать и то, что такое протоплазма. Это общность ядра и цитоплазмы. Сейчас мы кратко рассмотрим, какие функции выполняет каждый компонент клетки. Мембрана выполняет в первую очередь барьерную функцию, отделяет протоплазму от проникновения ненужных веществ.

Цитоплазма напоминает желеобразную массу и состоит из трех компонентов:

  • гиалоплазмы;
  • органелл;
  • включений.

Именно цитоплазма отвечает за жизненно важные процессы клетки: обмен веществ, энергетический и информационный обмен.

Среди всех функций ядра можно выделить следующие: регуляция обмена веществ, синтез РНК, хранение и передача наследственной информации.

Формы

От чего зависит форма клеток? От их предназначения – это в первую очередь. В данном разделе мы выделим возможные варианты. Но перед тем важно отметить их размеры, которые также весьма различны. Например, некоторые бактерии имеют размер примерно 0,2 мкм.

Если кто-то не знает, то 1 мкм равен одной тысячной 1 мм. Такую клеточку нельзя увидеть невооруженным глазом, но есть и более крупные примеры (яйцо курицы, перепела, страуса и так далее). По сути – это одна клетка, а ее размеры достигают 18 сантиметров в длину.

Выделим некоторые формы:

  • шар;
  • многогранник;
  • звезда;
  • цилиндр и так далее.

Вы видите, какое существует разнообразие форм и размеров клеток. Самую простую форму имеет лимфоцит – шар, в виде многогранника выступают гепатоциты (клетки печени), звезда – остеобласт (костная ткань) и так далее.

Растительные клетки

Формы клеток растительного происхождения постоянно одинаковы, а вот животные могут меняться. Растительные имеют прочную оболочку, что не дает им трансформироваться.

Размеры колеблются обычно между 10 и 100 мкм (размеры клеток высших растений). Но есть и более крупные клетки, они служат для запасов питательных веществ и воды. Такими являются клубни картофеля или сочных плодов. Мы можем невооруженным глазом увидеть клетки мякоти лимона, арбуза или апельсина, так как их размер — несколько миллиметров. Некоторые волокна (лен, крапива) достигают в длину до 80 миллиметров.

Животные клетки

Сейчас мы рассмотрим кратко формы и размеры клеток животного происхождения. Важно знать и то, что они имеют немного другое строение, нежели растительные. Сравните фотографии в прошлом и этом разделе. В большинстве случаев клетки животных очень мелкие (около 50 микрон). Поэтому их приходится изучать под микроскопом. Формы и размеры очень сильно отличаются. Для примера:

  • клетка мышцы – вытянутая форма;
  • клетка крови – овальная форма;
  • клетка кожи – плоская или бокаловидная форма.

Клетки бактерий

Мы уже рассмотрели формы клеток животных и растений, но как выглядят клетки бактерий? Все бактерии можно разделить на группы (по форме):

  • сферические;
  • палочковидные;
  • извитые.

Можете увидеть некоторые примеры на фотографии, представленной в разделе. Бактерии имеют очень малые размеры, эти клетки можно увидеть только под сильным увеличением микроскопа.

Источник: https://monateka.com/article/178601/

Разница между клеточной мембраной и клеточной стенкой

что поддерживает форму клетки

Клеточная стенка и клеточная мембрана являются двумя типами внешних границ, обнаруживаемых в клетках. Клеточная стенка является внешней границей бактерий, архей, грибов и растительных клеток. Клеточная мембрана является внешней границей клеток животных.

Клеточная мембрана может быть идентифицирована на внутренней стороне клеточной стенки, в клетках, которые обладают клеточной стенкой.

главное отличие между клеточной мембраной и клеточной стенкой является то, что клеточная мембрана является универсальной характеристикой всех живых клеток, тогда как клеточная стенка отсутствует в клетках животных.

Эта статья объясняет,

1. Что такое клеточная мембрана
      — структура, состав, функция
2. Что такое клеточная стенка
      — структура, состав, функция
3. В чем разница между клеточной мембраной и клеточной стенкой


Что такое клеточная мембрана

Клеточная мембрана — это биологическая мембрана, которая отделяет внутреннюю часть клетки от внешней среды.

Клеточная мембрана также называется плазматическая мембрана а также цитоплазматическая мембрана, Он избирательно проницаем для таких веществ, как ионы и органические молекулы.

Клеточная мембрана поддерживает постоянную среду внутри протоплазмы, контролируя проникновение веществ внутрь и наружу клетки. Это также защищает клетку от окружающей среды.

Структура клеточной мембраны

Структура мембраны описывается моделью жидкостной мозаики. Клеточная мембрана состоит из липидного бислоя со встроенными в него белками. Липидный бислой рассматривается как двумерная жидкость, в которой молекулы липида и белка более или менее легко диффундируют в нем. Образуется при самосборке липидных молекул. Эти липиды являются амфипатическими фосфолипидами.

Их гидрофобные «хвостовые» области скрыты от окружающей воды или гидрофильной среды двухслойной структурой. Таким образом, гидрофильные головки взаимодействуют с внутриклеточными / цитозольными или внеклеточными лицами. Благодаря этому образуется непрерывный сферический липидный бислой.

Следовательно, гидрофобные взаимодействия рассматриваются как основные движущие силы для образования липидного бислоя.

Структура липидного бислоя предотвращает проникновение полярных растворенных веществ в клетку. Но пассивная диффузия неполярных молекул разрешена. Следовательно, трансмембранные белки функционируют либо как поры, каналы или ворота для диффузии полярных растворенных веществ. Фосфатидилсерин концентрируется на мембране, чтобы создать дополнительный барьер для заряженных молекул.

Мембранные структуры, такие как подосома, кавеола, очаговая адгезия, инвадоподиум и различные типы клеточных соединений, присутствуют в мембране. Это называется «supramembrane”Структуры, которые обеспечивают связь, клеточную адгезию, экзоцитоз и эндоцитоз. Под клеточной мембраной цитоскелет находится в цитоплазме. Цитоскелет обеспечивает леса для закрепления мембранных белков. Подробная схема клеточной мембраны показана на Рисунок 1. 

Рисунок 1: Подробная схема клеточной мембраны

Состав клеточной мембраны

Клеточная мембрана в основном состоит из липидов и белков. В клеточной мембране можно найти три класса амфипатических липидов: фосфолипиды, гликолипиды и стеролы. Фосфолипиды являются наиболее распространенным типом липидов среди них. Холестерин обнаружен диспергированным по всей мембране в клетках животных.

Липосомы найдены ли липидные везикулы в клеточной мембране; они заключены в круглые карманы липидным бислоем. Углеводы можно найти в виде гликопротеинов и гликолипидов. 50% клеточной мембраны состоит из белков. Белки могут быть обнаружены в мембране трех типов: цельные или трансмембранные белки, закрепленные на липидах белки и периферические белки.

Функция клеточной мембраны

Клеточная мембрана физически отделяет цитоплазму от ее внеклеточной среды. Он также закрепляет цитоскелет, обеспечивая форму клетки. С другой стороны, клеточная мембрана прикрепляется к другим клеткам ткани, обеспечивая механическую поддержку клетки.

Клеточная мембрана избирательно проницаема, регулируя постоянную внутреннюю среду для функционирования клетки. Движение через клеточную мембрану может происходить как при пассивной, так и при активной диффузии. Четыре клеточных механизма могут быть идентифицированы в клеточной мембране. Небольшие молекулы, такие как углекислый газ, кислород и ионы, перемещаются через мембрану путем пассивного осмоса и диффузии.

Питательные вещества, такие как сахар, аминокислоты и метаболиты, перемещаются пассивно через трансмембранные белковые каналы. Аквапорины являются своего рода белковыми каналами, которые транспортируют воду путем облегченной диффузии. Поглощение молекул в клетку путем их поглощения называется эндоцитозом. Твердые частицы поглощаются фагоцитозом, а небольшие молекулы и ионы поглощаются пиноцитозом.

Некоторые непереваренные остатки удаляются из клетки путем инвагинации и образования пузырька. Этот процесс называется экзоцитозом.

Что такое клеточная стенка

Клеточная стенка представляет собой жесткий наружный структурный слой, обнаруживаемый в клетках бактерий, архей, грибов и растений. Структурная поддержка и защита обеспечивается клеточной стенкой. Он также действует как сосуд под давлением, который предотвращает чрезмерное расширение ячейки. Структура и состав варьируется между видами.

Растительная клеточная стенка

Клеточная стенка растения состоит из трех слоев: первичная клеточная стенка, которая представляет собой тонкий гибкий слой, вторичная клеточная стенка, которая представляет собой толстый слой, и средняя пластинка, которая богата пектином.

Первичная клеточная стенка состоит из древесины и содержит целлюлозу, гемицеллюлозу и пектиноподобные углеводы. Вторичная клеточная стенка включает целлюлозу, ксилан, лигнин и некоторые структурные белки. Вторичная клеточная стенка в ксилеме содержит лигнин.

Во время цитокинеза средняя пластинка образуется в клеточной пластинке. Структура клеточной стенки растения показана на фигура 2.

Рисунок 2: Растительная клеточная стенка

  • Клеточная стенка грибов состоит из трех основных компонентов: хитина, глюканов и белков.
  • Клеточная стенка водорослей состоит из целлюлозы и других гликопротеинов.
  • Бактериальная клеточная стенка состоит из пептидогликанов, таких как мурейн.
  • Археальная клеточная стенка состоит из пседомуреинов или гликопротеинов.

Функции клеточной стенки

Клеточная стенка придает клетке жесткость и прочность. Это также защищает клетку от механического стресса. Клеточная стенка может изгибаться со значительной прочностью на разрыв. Компоненты вторичной клеточной стенки, такие как лигнин и целлюлоза, придают растениям жесткость. Гидравлическое тургорное давление повышает жесткость в ячейке. Клеточная стенка позволяет клетке иметь определенную форму. Вторичная клеточная стенка также водонепроницаема.

С другой стороны, клеточная стенка является полностью проницаемой структурой. Но это предотвращает проникновение в клетку крупных молекул, таких как токсины. У большинства растений первичная клеточная стенка полностью проницаема для небольших молекул. Клеточная стенка создает стабильную осмотическую среду, поскольку она предотвращает осмотический лизис и помогает удерживать воду.

Присутствие

Клеточная мембрана: Клеточная мембрана является универсальной особенностью всех живых клеток.

Клеточная стена: Клеточная стенка присутствует в бактериях, археях, грибах и растительных клетках и отсутствует в клетках животных.

Состав

Клеточная мембрана: Клеточная мембрана представляет собой тонкую, тонкую структуру, шириной 5-10 нм.

Клеточная стена: Клеточная стенка представляет собой толстую жесткую структуру шириной 4-20 мкм.

наблюдение

Клеточная мембрана: Клеточную мембрану можно наблюдать под электронным микроскопом.

Клеточная стена: Клеточную стенку можно наблюдать под световым микроскопом.

Внешний слой

Клеточная мембрана: Клеточная мембрана является наружным слоем клеток животных.

Клеточная стена: Клеточная стенка является наружным слоем бактерий, архей, грибов и растительных клеток.

функция

Клеточная мембрана: Клеточная мембрана функционирует как защитное покрытие протоплазмы и поддерживает постоянную среду в протоплазме.

Клеточная стена: Клеточная стенка функционирует как защитное покрытие клеточной мембраны и поддерживает форму клетки.

Форма Клетки

Клеточная мембрана: Клеточная мембрана обеспечивает клетке круглую гибкую форму.

Клеточная стена: Клеточная стенка придает клетке фиксированную форму.

водопроницаемость

Клеточная мембрана: Клеточная мембрана избирательно проницаема, что позволяет выбранным молекулам перемещаться по ней.

Клеточная стена: Клеточная стенка полностью проницаема для макромолекул.

Статус жизни

Клеточная мембрана: Клеточная мембрана жива и метаболически активна.

Клеточная стена: Клеточная стенка неживая и метаболически неактивна.

Рецепторы

Клеточная мембрана: Рецепторы на клеточной мембране позволяют клетке получать сигналы от внешней среды.

Клеточная стена: В клеточной стенке отсутствуют рецепторы.

Жгутики и пили

Клеточная мембрана: Клеточная мембрана порождает жгутики и пили, которые помогают движению и прикреплению клетки соответственно.

Клеточная стена: Клеточная стенка облегчает жгутики и пили через небольшие отверстия.

толщина

Клеточная мембрана: Клеточная мембрана сохраняет одинаковую толщину на протяжении всей жизни.

ЭТО ИНТЕРЕСНО:  Как снять радиатор печки ваз 2110

Клеточная стена: Клеточная стенка со временем увеличивает свою толщину и занимает всю клетку, вызывая гибель клетки, особенно в растительных клетках.

Требования к питанию

Клеточная мембрана: Клеточная мембрана требует питания от клетки, и она сокращается в условиях засухи.

Клеточная стена: Поскольку клеточная стенка представляет собой простой запас веществ, она не требует питания от клетки.

Заключение

Клеточная мембрана и клеточная стенка могут быть идентифицированы как внешние слои клеток. Клеточная стенка является наружным слоем большинства клеток, включая растения, бактерии и грибы. Клеточная мембрана образует внешний слой клеток животных, поскольку они не обладают клеточной стенкой. Клеточная стенка полностью проницаема для веществ и не содержит рецепторов.

Клеточная мембрана полупроницаема для веществ, поддерживая постоянную среду в протоплазме. Клеточная мембрана также содержит рецепторы, позволяющие клеткам реагировать на изменения внешней среды. Правильная форма может поддерживаться в клетке, а не клеточной мембраной, а клеточной стенкой.

Основным отличием клеточной мембраны от клеточной стенки является их универсальность как особенность конкретной клетки.

Ссылка:
1.

Источник: https://ru.strephonsays.com/difference-between-cell-membrane-and-cell-wall

Форма и размеры клетки

что поддерживает форму клетки

Наш организм составляют клетки около 200 различных специализаций, и все они, независимо от типа, выполняют одну функцию – поддерживают на протяжении определённого времени свою трудоспособность, обеспечивая жизнедеятельность организма.

Клетки имеют разнообразную форму, они могут быть очень мелкими, и увидеть их можно лишь в микроскоп.

Замечание 1

Впервые клетку рассмотрел в обычный ветовой микроскоп английский натуралист Роберт Гук в $XVІІ$ столетии. С помощью современных электронных микроскопов можно рассмотреть не только размеры и форму клеток, но и их внутреннюю структуру.

Формы клеток

Каждая клетка имеет характерные форму, размер, длительность жизни, которые зависят от её функциональных свойств.

Пример 1

Нервные клетки имеют аксоны, передающие нервные сигналы. Лейкоциты благодаря гибкой мембране уплощаются, проходя сквозь тонкие поры в капиллярах. Сперматозоиды, имеющие хвост, способны самостоятельно двигаться по гениталиях. Мышечные клетки соответственно силе сокращений изменяют свою длину.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Клетки имеют разнообразную форму и размеры в зависимости от функции, которую выполняют:

  • овальную, округлые (яйцеклетки),
  • дискообразную (эритроциты),
  • яйцевидную,
  • спиральную,
  • призматическую,
  • веретеновидную (мышечные),
  • цилиндрическую и кубические (эпителиальные ткани)
  • звёздчатую (нервные)
  • палочкообразную т.п.

Пример 2

Эритроциты (клетки крови) по форме напоминают вогнутый с двух сторон диск, а нейроны (нервные клетки) имеют один длинный (до 1 м) отросток и несколько коротких. Жировые клетки округлой формы, а мышечные имеют форму волокон.

Все клетки за формой делятся на паренхимные и прозенхимные.

Паренхимные клетки имеют одинаковые размеры во всех направлениях в пространстве: длина их не превышает толщину более чем в 3 раза. Их размеры варьируют от 10 до 500 мкм и более.

Прозенхимные – клетки удлинённые. Длина их превышает толщину более чем в 3 раза. Часто эти клетки имеют заострённые концы, толстые, преимущественно одревеснелые оболочки. Из них в основном формируются проводящие и механические ткани растений. Длина их варьирует приблизительно от 1 до 100 мм.

Клетки делят на два типа: прокариотические (не имеют оформленного ядра) и эукариотические (ядерные). Клетки эукариот в свою очередь делят на подтипы: клетки простейших и клетки многоклеточных.

Клетки тканей растений и животных отличаются размером, формой, особенностями организации, функциями.

От формы клеток зависят и выполняемые ими функции.

Пример 3

Функция эритроцитов – транспорт кислорода в организме, нервных клеток – проведение сигналов от органов к мозгу и соответствующих команд от мозга к органам. Длинные мышечные клетки могут сокращаться и расслабляться, благодаря чему осуществляются движения тела. В жировых клетках содержится запас питательных веществ. Кроме того, большинство клеток способны образовывать белки из аминокислот. Эти белки необходимы для нормальной жизнедеятельности организма.

Биологической наукой доведено, что организмы всех растений и животных происходят от клетки и имеют клеточное строение.

Клетка как элементарная биологическая система является основной структурно-функциональной единицей всех живых организмов за исключением вирусов, которые являются неклеточными формами жизни.

Именно на уровне клетки проявляются все основные признаки жизни: обмен энергии и веществ, способность к размножению, сохранению и передаче наследственной информации потомкам и т.п.

Одни клетки способны существовать как самостоятельные элементарные биологические системы. Это касается одноклеточных организмов – простейших (жгутиковые, инфузории, споровики).

Большинство простейших обитают в водоёмах, участвуя в их самоочищении и являясь достаточно хорошей кормовой базой для рыб.

Другие же клетки составляют многоклеточные организмы, в которых обеспечивают взаимодействие между клетками, тканями и органами с участием регуляторных механизмов, в частности нейрогуморальной регуляции.

Все клеточные формы жизни разделяют на основании строения составляющих их клеток делят на два подцарства – прокариоты (безъядерные) и эукариоты (ядерные). Клетки прокариот имеют более простое строение – предположительно, что в процессе эволюции они возникли раньше. Более сложные по строению эукариотические клетки возникли позже.

Несмотря на разнообразие форм организация клеток всех живых организмов подлежит единым структурным принципам. На основании микроскопических исследований доказано, что основными структурными компонентами клеток явдляется клеточная оболочка, цитоплазма и ядро.

Размеры клетки

Клетка – универсальная структурная и функциональная единица живых организмов, имеющая асе признаки живого, способная к саморегуляции, самовоспроизведению и развитию.

Термин «клетка» предложил английский учёный Р. Гук (1665).

Организм некоторых водорослей состоит из одной клетки, а гигантских секвой – из миллиардов клеток.

Замечание 2

У растений, в зависимости от возраста, клетки могут быть живыми или мёртвыми.По размеру они, как правило, микроскопически мелкие, а клетки запасной паренхимы некоторых растений можно увидеть невооружённым глазом.

Все органы живых организмов состоят из клеток. Значит, они имеют клеточное строение, а каждая клетка – это микроскопически малая составляющая часть организма.

Клетки прилегают друг к другу и соединены особенным межклеточным веществом, которое содержится между оболочками соседних клеток. Если всё междуклеточное вещество разрушается, клетки разъединяются.

Пример 4

Такое бывает в мякоти рассыпчатого яблока, спелых арбузов и помидор. Варёный картофель становится рассыпчатым потому, сто межклеточное вещество во время варки разрушается и клетки разъединяются.

Замечание 3

Часто живые клетки всех органов растений во время роста немного закругляются. При этом их оболочки местами отходят друг от друга: в этих участках межклеточное вещество разрушается. Образуются междуклеточники, заполненные воздухом. Сеть междуклеточников соединяется с воздухом, окружающим растение, через особенные междуклеточники на поверхности органов.

В организме взрослого человека насчитывается около 200 видов клеток, которые отличаются по размеру, форме, особенностям организации, функциям.

Размер и масса клеток разнообразны.

Размеры клеток варьируют от 0,1 – 0,25 мкм (некоторые бактерии) до 155 мм (яйцо страуса в скорлупе); диаметр большинства эукариотических клеток лежит в пределах 10 – 100 мкм.

Рамеры клеток организма человека колеблются от 3-4 мкм (некоторые клетки лейкоцитов) до 150 см (нервная клетка вместе с отростками).

Чаще встречаются клетки размером 10-100 мкм, реже – 1-10 мкм (клетки мякоти арбуза, цитрусовых, железистые клетки некоторых моллюсков) и очень редко – до 10-20 см (гигантские яйцеклетки птиц – гусей, гаг, пингвинов, страусов).

Источник: https://spravochnick.ru/biologiya/citologiya_-_nauka_o_stroenii_i_funkcii_kletok/forma_i_razmery_kletki/

Растительная и животная клетка, таблица сравнения в строении и жизнедеятельности, вывод — Учёба

Растительные и животные организмы на Земле отличаются. У них разный внешний вид, внутреннее строение. Но главные отличительные особенности можно увидеть только под микроскопом, рассмотрев клетки. Чтобы понять различия между животными и растительными, необходимо сначала узнать цитологические характеристики каждого биологического царства из рассматриваемых.

Термин «клетка» ввёл англичанин Роберт Гук в 1665 году. Учёный исследовал различные материалы с помощью оптических линз. Изучая пробковое дерево под микроскопом, он обнаружил множество маленьких ячеек. Описание этого открытия есть в книге исследователя под названием «Микрография: или несколько физиологических описаний мельчайших тел, сделанных лупами».

Понятие и признаки растительной клетки

Растительная — это эукариотическая строительная структура растений, которая имеет специфические органеллы и способность к фототрофному типу питания, то есть получать энергию в процессе фотосинтеза.

Существуют растения, которые умеют питаться разными способами. Эвглена зелёная без солнечного света становится гетеротрофом. А венерина мухоловка использует насекомых в качестве источника углерода.

Органеллы, которые присутствуют только в растительных:

  • стенка — состоит из целлюлозы, находится снаружи мембраны. Имеет высокую важность для жизнедеятельности растений. Она придаёт дополнительную прочность и твёрдость оболочке, соединяет между собой все клетки и помогает транспортировать по ним вещества;
  • лейкопласты — пластиды, появляющийся в растениях, выращивающихся без солнечного света;
  • хромопласты — образуются при разрушении хлоропластов, имеют оранжевый цвет. Придают окраску спелым плодам и цветам;
  • хлоропласты — сложные пластиды, необходимые для процесса переработки солнечной энергии в химическую. В них есть хлорофилл, стромы, кольцевая молекула ДНК, рибосомы, граны. Может присутствовать крахмал и капельки масла;
  • центральная вакуоль — это крупный мешочек с клеточным соком. Данная органелла участвует в обменных цитологических процессах и поддержке внутреннего давления.

Клеточная стенка есть у грибов (состоит из хитина), у бактерий (из муреина).

У цитрусовых можно увидеть без микроскопа. Они большие и вкусные. Это продолговатые мешочки с соком, которые видел каждый.

Признаки растительной:

  • аутотрофность питания;
  • запасы крахмала;
  • наличие большой вакуоли, стенки и хлоропластов;
  • присутствие дополнительного этапа, называемого префразой при митозе;обмен веществами через плазмодесмы.

Понятие и строение животной клетки

Животная — это единица функционирования в царстве животных. Её особенностями являются эластичная мембрана, наличие рибосом, ограниченный срок жизнедеятельности.

Интересный факт. Впервые описал сперматозоиды Левенгук в конце XVII века. Он назвал их «семенными зверьками». На протяжении почти ста лет учёные считали их паразитическими организмами, живущими в оплодотворяющей жидкости. Размер сперматозоидов не зависит от общей величины организма. Например, у тритонов и мышей «семенные зверьки» в разы больше человеческих.

Строение животной клетки:

  • мембрана — органелла, состоящая из полисахаридов, белков и липидов, которая отвечает за ограничение клеточного содержимого от внешней среды и химическую фильтрацию;
  • ядро — содержит ДНК. Представляет из себя ядрышко, плавающее в хроматине и кариоплазме, окруженное двумя слоями оболочки;
  • рибосомы синтезируют белки. Располагаются в митохондриях, откуда выходят в цитоплазу;
  • митохондрии — производят молекулы АТФ, участвуют в процессе переработки кислорода;
  • аппарат Гольджи — система из микроскопических цистерн, расширенных на конце. Здесь рождаются лизосомы, хранятся и подготавливаются к перемещению белки, липиды, углеводы;
  • ЭПР — эндоплазматический ретикулум выполняет функцию синтеза белков и липидов. Бывает гладкий и шершавый;
  • центриоли — органеллы, характерные только животным. Встречаются и у низших растений. Участвуют в процессе митоза;
  • цитоплазма — заполнена золем, в котором плавают другие части.

  В чем отличия мази от крема Клотримазол — что лучше выбрать

Сходства животных и растительных клеток

Несмотря на различия внешнего вида растений и животных, их клетки имеют много общего. Ведь они имеют гомологичное строение:

  • все органеллы, присущие животным, есть у растений. Кроме центриолей;
  • органеллы имеют мембраны, которые отделяют их от другого содержимого;
  • способ размножения тоже похож. К митозу и мейозу способны оба типа;
  • сходство химического состава;
  • алгоритм протекание внутренних процессов;
  • наследственная информация закладывается при помощи дизоксирибонуклеиновой кислоты — ДНК.

Источник: https://rozli.ru/kultura/rastitelnaya-i-zhivotnaya-kletka-tablitsa-sravneniya-v-stroenii-i-zhiznedeyatelnosti-vyvod.html

Строение животной клетки

Ученые позиционируют животную клетку как основную часть организма представителя царства животных — как одноклеточных так и многоклеточных.

Они являются эукариотическими, с наличием истинного ядра и специализированных структур — органелл, выполняющих дифференцированные функции.

Растения, грибы и протисты имеют эукариотические клетки, у бактерий и архей определяются более простые прокариотические клетки.

Строение животной клетки отличается от растительной. Животная клетка не имеет стенок или хлоропластов (органелл, выполняющих фотосинтез).

  • Рисунок животной клетки с подписями
  • Основные органеллы и органоиды животной клетки
  • Как выглядит животная клетка под микроскопом
  • Функции центриоли
  • Строение клетки человека — рисунок с подписями
  • Признаки живой клетки
  • Отличительные признаки растительной и животной клетки в таблице
  • Заключение

Рисунок животной клетки с подписями

Клетка состоит из множества специализированных органелл, выполняющих различные функции.

Чаще всего, в ней содержится большинство, иногда все существующие типы органелл.

Основные органеллы и органоиды животной клетки

Органеллы и органоиды являются «органами», ответственными за функционирование микроорганизма.

Ядро

Ядро является источником дезоксирибонуклеиновой кислоты (ДНК) — генетического материала. ДНК является источником создания белков, контролирующих состояние организма. В ядре, нити ДНК плотно обматываются вокруг узкоспециализированных белков (гистонов), формируя хромосомы.

Ядро выбирает гены, контролируя активность и функционирование единицы ткани. В зависимости от типа клетки, в ней представлен различный набор генов. ДНК находится в нуклеоидной области ядра, где образуются рибосомы. Ядро окружено ядерной мембраной (кариолеммой), двойным липидным бислоем, отгораживающим его от остальных компонентов.

Ядро регулирует рост и деление клетки. При митозе в ядре образуются хромосомы, которые дублируются в процессе размножения, образуя две дочерние единицы. Органеллы, называемые центросомами, помогают организовать ДНК во время деления. Ядро обычно представлено в единственном числе.

Рибосомы

Рибосомы — место синтеза белка. Они обнаружены во всех единицах ткани, у растений и у животных. В ядре, последовательность ДНК, которая кодирует определенный белок, копируется в свободную мессенджерную РНК (мРНК) цепь.

Цепочка мРНК перемещается к рибосоме через передающую РНК (тРНК), и ее последовательность используется для определения системы расположения аминокислот в цепи, составляющей белок. В животной ткани рибосомы расположены свободно в цитоплазме или прикреплены к мембранам эндоплазматического ретикулума.

Эндоплазматический ретикулум

Эндоплазматический ретикулум (ER) представляет собой сеть мембранных мешочков (цистерн), отходящих от внешней ядерной мембраны. Он модифицирует и транспортирует белки, созданные рибосомами.

ЭТО ИНТЕРЕСНО:  Руль не крутится что делать

Существует два вида эндоплазматического ретикулума:

  • гранулярный;
  • агранулярный.

Гранулярный ЭР содержит прикрепленные рибосомы. Агранулярный ЭР свободен от прикрепленных рибосом, участвует в создании липидов и стероидных гормонов, удалении токсичных веществ.

Везикулы

Везикулы представляют собой небольшие сферы липидного бислоя, входящие в состав наружной мембраны. Они используются для транспортировки молекул по клетке от одной органеллы к другой, участвуют в метаболизме.

Специализированные везикулы, называемые лизосомами, содержат ферменты, переваривающие большие молекулы (углеводы, липиды и белки) в более мелкие, для облегчения их использования тканью.

Аппарат Гольджи

Аппарат Гольджи (комплекс Гольджи, тело Гольджи) также состоит из не соединенных между собой цистерн (в отличие от эндоплазматического ретикулума).

Аппарат Гольджи получает белки, сортирует и упаковывает их в везикулы.

Митохондрии

В митохондриях осуществляется процесс клеточного дыхания. Сахара и жиры разрушаются, выделяется энергия в виде аденозинтрифосфата (АТФ). АТФ управляет всеми клеточными процессами, митохондрии продуцируют АТФ клетки. Митохондрии иногда называют «генераторами».

Цитоплазма клетки

Цитоплазма – жидкостная среда клетки. Она может функционировать даже без ядра, однако, короткое время.

Цитозоль

Цитозолью называют клеточную жидкость. Цитозоль и все органеллы внутри нее, за исключением ядра, в совокупности называются цитоплазмой. Цитозоль в основном состоит из воды, а также содержит ионы (калий, белки и малые молекулы).

Цитоскелет

Цитоскелет представляет собой сеть нитей и трубочек, распространенных по всей цитоплазме.

Он выполняет следующие функции:

  • придает форму;
  • обеспечивает прочность;
  • стабилизирует ткани;
  • закрепляет органеллы на определенных местах;
  • играет важную роль в передаче сигналов.

Существует три типа цитоскелетных нитей: микрофиламенты, микротрубочки и промежуточные филаменты. Микрофиламенты являются самыми маленькими элементами цитоскелета, а микротрубочки – самыми большими.

Клеточная мембрана

Клеточная мембрана полностью окружает животную клетку, не имеющую клеточной стенки, в отличие от растений. Клеточная мембрана представляет собой двойной слой, состоящий из фосфолипидов.

Фосфолипиды являются молекулами, содержащими фосфаты, прикрепленные к глицерину и радикалам жирных кислот. Они спонтанно образуют двойные мембраны в воде из-за своих одновременно гидрофильных и гидрофобных свойств.

Клеточная мембрана избирательно проницаема — она способна пропускать определенные молекулы. Кислород и диоксид углерода проходят легко, в то время как большие или заряженные молекулы должны проходить через специальный канал в мембране, что поддерживает гомеостаз.

Лизосомы

Лизосомы представляют собой органеллы, осуществляющие деградацию веществ. В состав лизосомы входит около 40 расщепляющих ферментов. Интересно, что сам клеточный организм защищен от деградации в случае прорыва лизосомных ферментов в цитоплазму, разложению подвергаются закончившие выполнять свои функции митохондрии. После расщепления образуются остаточные тела, первичные лизосомы превращаются во вторичные.

Центриоль

Центриоли являются плотными телами, расположенными около ядра. Количество центриолей меняется, чаще всего их две. Центриоли соединены эндоплазматической перемычкой.

Как выглядит животная клетка под микроскопом

Под стандартным оптическим микроскопом видны основные компоненты. За счет того, что они соединены в непрерывно меняющийся организм, находящийся в движении, определить отдельные органеллы бывает сложно.

Не вызывают сомнений следующие части:

  • ядро;
  • цитоплазма;
  • клеточная мембрана.

Подробнее изучить клетку поможет большая разрешающая способность микроскопа, тщательно подготовленный препарат и наличие некоторой практики.

Функции центриоли

Точные функции центриоли остаются неизвестными. Распространена гипотеза, что центриоли участвуют в процессе деления, образуя веретено деления и определяя его направленность, однако определенность в научном мире отсутствует.

Строение клетки человека — рисунок с подписями

Единица клеточной ткани человека имеет сложное строение. На рисунке отмечены основные структуры.

Каждый компонент имеет свое назначение, лишь в конгломерате они обеспечивают функционирование важной части живого организма.

Признаки живой клетки

Живая клетка по своим признакам схожа с живым существом в целом. Она дышит, питается, развивается, делится, в ее структуре происходят различные процессы. Понятно, что замирание естественных для организма процессов означает гибель.

Отличительные признаки растительной и животной клетки в таблице

Растительная и животная клетки имеют как сходства, так и различия, которые кратко описаны в таблице:

Признак Растительная Животная
Получение питания Автотрофный.Фотосинтезирует питательные вещества Гетеротрофный. Не производит органику.
Хранение питания В вакуоли В цитоплазме
Запасной углевод крахмал гликоген
Репродуктивная система Образование перегородки в материнской единице Образование перетяжки в материнской единице
Клеточный центр и центриоли У низших растений У всех типов
Клеточная стенка Плотная, сохраняет форму Гибкая, позволяет изменяться

Основные компоненты являются сходными как для частиц растительного, так и животного мира.

Клетка растений

Есть несколько причин, почему растения выделяют в отдельное царство.

  • Во-первых, запасное питательное вещество растительной клетки — углевод крахмал;
  • во-вторых, это неподвижный образ жизни и неограниченный рост;
  • и в -третьих, особенности клеточного строения растений — определенные органеллы клетки, которые присущи именно этому царству живых организмов.

Основные (общие для всех клеток) органеллы :

  1. Ядро и ядрышко — хранение и передача наследственной информации.
  2. Мембрана клетки — защита, поддержание формы, активный и пассивный транспорт веществ. У растений мембрана клетки утолщена запасным питательным веществом — крахмалом — и это уже целая  клеточная стенка.
  3. Цитоплазма  — внутренняя жидкая среда любой клетки, содержит все органойды, органические и неорганические вещества, поддерживает тургор (внутреннее давление) клетки.
  4. Эндоплазматическая сеть (эндоплазматический ретикулум) — это и внутренний «скелет» клетки, и обеспечение транспорта питательных веществ, в случае шероховатой ЭПС — это синтез белка,.
  5. Аппарат Гольджи — «сортирует»  белки, выводит вещества, произведенные ЭПС, образует лизосомы.
  6. Лизосомы — пищеварительные органеллы клетки.
  7. Митохондрия — «энергетическая станция» клетки.
  8. Рибосомы — производство белка. Рибосом в растительной клетке мало, гораздо меньше, чем в животной. Это связано с тем, что функция обмена веществ ложится, главным образом, на хлоропласты.
  9. Вакуоль — органелла, присущая растительной (и грибной) клетке.

Строение вакуоли

В растительной клетке (и клетках грибов) она крупная — по размеру может быть даже больше ядра.
Органойд окружен мембраной, внутри содержится вода с растворенными в ней веществами.

Функции вакуоли:

В вакуолях содержатся органические кислоты, углеводы, дубильные вещества, неорганические вещества (нитраты, фосфаты, хлориды и др.), белки и др. , т.е.

  • Хранение запасных веществ
  • Выведение из организма продуктов распада
  • Если вакуоль содержит ферменты, то это пищеварительная вакуоль
  • Пульсирующая или сократительная вакуоль — поддерживает форму клетки, регулирует осмотическое давление=поддерживает ТУРГОР клетки.Из чего образуются вакуоли? Они образуются из Эндоплазматической сети (ЭПС).

10.  Органелла растительной клетки — хлоропласт.
Основной признак, по которому живой организм относят к царству Растений, это способность к фотосинтезу — автотрофному питанию.

Органелла, которая отвечает за этот процесс — синтеза органических веществ (глюкозы) из неорганических (CO2, H2O и солнечного света) — хлоропласт.

Хлоропласты — это вид пластид. В растениях пластиды бывают трех видов:

  • собственно хлоропласты — содержат хлорофилл — зеленые пластиды;
  • лейкопласты — содержат крахмал — запасное питательное вещество, эти органеллы бесцветные;
  • хромопласты — оранжевые, они содержат каротинойды.

Строение хлоропластов

Сразу оговоримся — строение этих органелл оказалось возможным изучить только с помощью электронного микроскопа.

  1. Это двумембранная органелла — есть внешняя мембрана и внутренняя.
  2. Внутри весь объем заполнен жидкостью и мембранами. Мембраны образуют пузырьки, «мешочки» — тилакойды.
  3. Тилакойды, собранные в пачки, называются гранами.

Именно в этой системе происходит фотосинтез. Давайте разберем подробнее сам процесс.

Процесс фотосинтеза

Фотосинтез — процесс синтеза органических веществ за счет энергии света.

Хлорофилл улавливает энергию света, преобразует ее в АТФ (синоним энергии в биологии), и синтезирует глюкозу — органическое вещество.

Ферменты — биокатализаторы всех природных процессов, расположены так же в хлоропластах.

Уравнение фотосинтеза выглядит следующим образом:

6СO2 + 6H2O = C6H12O6 (глюкоза) + 6O2

Это суммарное уравнение процесса, который, на самом деле, состоит из двух фаз: темновой и световой.

Световая фаза фотосинтеза:

(происходит на мембранах тилакойдов)

  • Энергия света используется для синтеза и запасания АТФ (энергии) и образования других молекул — носителей энергии;
  • Идет процесс — фотолиз воды: 2H2O = O2 + 4H(+)  + 4e- (выделяется кислород)

Темновая фаза:
(происходит в стромах хлоропласта)

  •  вот именно в эту фазу идет синтез глюкозы, для которой используется энергия, накопленная в световой фазе;
  • образуется глюкоза — основной органический продукт фотосинтеза

Фотосинтез обеспечивает 2 абсолютно важные для жизни на Земле вещи:

  1. Растения — автотрофы и продуценты — т.е. они первые образуют органические вещества, которые поглощают все остальные организмы.
  2. Именно растения поставляют кислород, необходимый для дыхания других живых организмов.

Рост клетки

Растительные клетки растут за счет увеличения объема цитоплазмы и за счет увеличения размера вакуолей. Клеточная оболочка при этом растягивается.

 

 

  • в ЕГЭ это вопрос A2 — Клеточная теория. Многообразие клеток
  • A3 — Клетка: химический состав, строение, функции органоидов
  • А27 — Клеточный ровень организации
  • B2

Обсуждение: «Клетка растений»

(Правила комментирования)

Источник: https://distant-lessons.ru/kletka-rastenij.html

Растительные клетки

Формы клеток растительного происхождения постоянно одинаковы, а вот животные могут меняться. Растительные имеют прочную оболочку, что не дает им трансформироваться.

Размеры колеблются обычно между 10 и 100 мкм (размеры клеток высших растений). Но есть и более крупные клетки, они служат для запасов питательных веществ и воды. Такими являются клубни картофеля или сочных плодов. Мы можем невооруженным глазом увидеть клетки мякоти лимона, арбуза или апельсина, так как их размер — несколько миллиметров. Некоторые волокна (лен, крапива) достигают в длину до 80 миллиметров.

Клетки бактерий

Мы уже рассмотрели формы клеток животных и растений, но как выглядят клетки бактерий? Все бактерии можно разделить на группы (по форме):

  • сферические;
  • палочковидные;
  • извитые.

Можете увидеть некоторые примеры на фотографии, представленной в разделе. Бактерии имеют очень малые размеры, эти клетки можно увидеть только под сильным увеличением микроскопа.

Источник: https://FB.ru/article/296164/ot-chego-zavisit-forma-kletok-formyi-kletok

Живая клетка — материалы для подготовки к ЕГЭ по Биологии

Автор статьи — Л.В. Окольнова.

Клетки разных царств имеют много общих черт, но есть и существенные различия.

Мы рассмотрим клетки 4-х живых организмов — животных, растений , грибов и бактерий.

Опишем их общие органоиды и то, что различает их.

Бактериальная клетка

Отличается от всех остальных как самая просто устроенная.

Клеточная оболочка — основные функции — защита и обмен веществ. Запасное питательное вещество уникально, в других живых клетках его нет — это углевод муреин.

Мембрана — как и у остальных живых клеток, основная функция — защита и обмен веществ.

Цитоплазма — внутренняя полужидкая среда, содержит питательные вещества.

Рибосомы — синтезируют белок.
Мезосомы — осуществление окислительно-восстановительных процессов.
Ядра нет, есть нуклеоид — кольцевая ДНК и РНК.
Жгутитки — обеспечивают движение.

Клетка растений

Клеточная стенка — функции те же, запасное питательное вещество — углевод — крахмал, целлюлоза и т.п.
Мембрана — защита и обмен веществ, небольшое отличие — есть плазмодесмы — что-то вроде мостиков между соседними клетками в многоклеточных растениях.
Цитоплазма — внутренняя полужидкая среда, содержит питательные вещества.
Рибосомы — есть, но немного, синтезируют белок.

Ядро — центр генетической информации клетки.
ЭПС (эндоплазматический ретикулум), гладкий (без рибосом) — обеспечивает транспорт веществ, поддерживает форму клетки, шероховатый — рибосомы на нем обеспечивают синтез белка.
Цитоплазма — внутренняя полужидкая среда, содержит питательные вещества.
Хлоропласт — обязательный органойд исключительно растительной клетки. Функция синтез.

Вакуоль — тоже именно растительный органойд — запас клеточного сока.
Митохондрия — синтез АТФ — обеспечение клетки энергией.
Лизосомы — пищеварительные органеллы.
Аппарат Гольджи — производит лизосомы и хранит питательные вещества.
Микрофиламенты — белковые нити — “рельсы” для передвижения некоторых органелл, участвуют в делении клетки.

Микротрубочки — примерно то же самое, что микрофиламенты, только толще.

Клетка животных

Клеточной стенки нет, нет хлоропластов, нет вакуолей.

Остальные органеллы те же, что и у растительной клетки, есть одно “добавление” — компонент ТОЛЬКО животной клетки — центриоли — участвуют в делении клетки, отвечая за правильное расхождение хромосом.

Клетка грибов

Рисунки животной клетки никогда не встречаются в ЕГЭ, да и строение клетки рассматривается только в сравнении с животной и растительной.

По строению она очень похожа на животную, только нет центриолей и есть клеточная стенка, запасное питательное вещество которой — гликоген.

Источник: https://ege-study.ru/ru/ege/materialy/biologiya/zhivaya-kletka/

Строение клетки различных организмов :

Клетка — это основная структурная и функциональная единица всех живых организмов, кроме вирусов. Она имеет специфическое строение, включающее множество составляющих, которые выполняют определенные функции.

Какая наука изучает клетку?

Всем известно, что наука о живых организмах — биология. Строение клетки изучает ее отрасль — цитология.

Из чего состоит клетка?

Данная структура состоит из мембраны, цитоплазмы, органоидов, или органелл, и ядра (в прокариотических клетках отсутствует). Строение клеток организмов, относящихся к разным классам, немного различается. Существенные отличия наблюдаются между структурой клеток эукариотов и прокариотов.

Плазматическая мембрана

Мембрана играет очень важную роль — она отделяет и защищает содержимое клетки от внешней среды. Она состоит из трех слоев: двух белковых и среднего фосфолипидного.

Клеточная стенка

Еще одна структура, защищающая клетку от воздействия внешних факторов, расположена поверх плазматической мембраны. Присутствует в клетках растений, бактерий и грибов. У первых она состоит из целлюлозы, у вторых — из муреина, у третьих — из хитина. В животных клетках поверх мембраны расположен гликокаликс, который состоит из гликопротеидов и полисахаридов.

ЭТО ИНТЕРЕСНО:  Как снять замок зажигания на ваз 2115

Цитоплазма

Она представляет собой все пространство клетки, ограниченное мембраной, за исключением ядра. Цитоплазма включает органоиды, которые выполняют основные функции, отвечающие за жизнедеятельность клетки.

Органеллы и их функции

Строение клетки живого организма подразумевает ряд структур, каждая из которых выполняет определенную функцию. Они называются органеллами, или органоидами.

Комплекс Гольджи

Он присутствует только в клетках эукариотов. Данная органелла состоит из диктосом, количество которых обычно составляет приблизительно 20, но может доходить и до нескольких сотен. Аппарат Гольджи входит в строение клетки только эукариотических организмов.

Он расположен около ядра и выполняет функцию синтеза и хранения определенных веществ, к примеру, полисахаридов. В нем образуются лизосомы, о которых пойдет речь ниже. Также эта органелла является частью выделительной системы клетки. Диктосомы представлены в виде стопок из сплющенных цистерн дискообразной формы.

На краях этих структур образуются пузырьки, где находятся вещества, которые необходимо вывести из клетки.

Эндоплазматическая сеть (ретикулум)

Строение клетки всех эукариотических клеток подразумевает и наличие ЭПС (эндоплазматической сети). Эндоплазматический ретикулум состоит из трубочек и сплющенных полостей, имеющих мембрану. Этот органоид бывает двух видов: шероховатая и гладкая сеть.

Первая отличается тем, что к ее мембране крепятся рибосомы, вторая такой особенности не имеет. Шероховатая эндоплазматическая сеть выполняет функцию синтеза белков и липидов, которые требуются для формирования клеточной мембраны или для других целей. Гладкая принимает участие в выработке жиров, углеводов, гормонов и других веществ, кроме белков.

Также эндоплазматический ретикулум выполняет функцию транспортировки веществ по клетке.

Клеточный центр

Состоит из центриолей, которые имеют форму полого цилиндра. Его стенки образованы из микротрубочек. Эта структура участвует в процессе деления, обеспечивая распределение хромосом между дочерними клетками.

Ядрышко

Это обособленная часть ядра, отвечающая за формирование рибосомальной РНК.

Органеллы, присущие только растительным клеткам

Клетки растений имеют некоторые органоиды, которые не свойственны больше ни для каких организмов. К ним относятся вакуоли и пластиды.

Вакуоль

Это своеобразный резервуар, где хранятся запасные питательные вщеества, а также продукты жизнедеятельности, которые не могут быть выведены наружу из-за плотной клеточной стенки. Она отделяется от цитоплазмы специфической мембраной, которая называется тонопластом. По мере того как функционирует клетка, отдельные небольшие вакуоли сливаются в одну большую — центральную.

Пластиды

Эти органоиды делятся на три группы: хлоропласты, лейкопласты и хромопласты.

Хлоропласты

Это важнейшие органоиды растительной клетки. Благодаря им осуществляется фотосинтез, в процессе которого клетка получает нужные ей питательные вещества. Хлоропласты имеют две мембраны: внешнюю и внутреннюю; матрикс — вещество, которым заполнено внутреннее пространство; собственную ДНК и рибосомы; зерна крахмала; граны. Последние состоят из стопок тилакоидов с хлорофиллом, окруженных мембраной. Именно в них и происходит процесс фотосинтеза.

Лейкопласты

Эти структуры состоят из двух мембран, матрикса, ДНК, рибосом и тилакоидов, но последние не содержат хлорофилл. Лейкопласты выполняют запасную функцию, накапливая питательные вещества. В них содержатся специальные ферменты, позволяющие получать из глюкозы крахмал, который, собственно, и служит запасным веществом.

Хромопласты

Данные органоиды имеют такую же структуру, как и описанные выше, однако в них нет тилакоидов, но есть каротиноиды, которые имеют специфическую окраску и расположены непосредственно возле мембраны. Именно благодаря этим структурам лепестки цветов окрашены в определенный цвет, позволяющий привлекать насекомых-опылителей.

Источник: https://www.syl.ru/article/141134/mod_stroenie-kletki-razlichnyih-organizmov

Клетка

Клетка Клетка

Клетка является основной структурной единицей всего живого. Развитие организма человека начинается с одной клетки, путем деления количество клеток увеличивается до 1016 у взрослого. Среди всего многообразия существующих на Земле организмов не имеют клеточного строения только вирусы и фаги.

Клетки бывают 2 типов: прокариотические и эукариотические. Из сравнительно простых клеток прокариотического типа построены бактерии и некоторые другие простейшие организмы, из клеток эукариотического типа – все растения, грибы и животные.

Открытие клетки в 1665 году англичанином Р. Гуком и последующее исследование ее строения тесно связаны с изобретением и усовершенствованием микроскопа. В середине ХIХ века была сформулирована клеточная теория, основные

положения которой представлены в трудах Т. Шванна, М. Шлейдена и Р. Вирхова.

В современной интерпретации эти положения звучат так: клетка – универсальная элементарная единица живого; клетки всех организмов принципиально сходны  по своему строению, функции и химическому составу; клетки размножаются только путем деления исходной клетки; многоклеточные организмы

являются сложными клеточными ансамблями.

Строение клетки

Типичная эукариотическая клетка состоит из 3 компонентов: оболочки, цитоплазмы и ядра. При этом клетки разнообразны по форме, строению, химическому составу и характеру обмена веществ.

Оболочка клетки
Снаружи каждая клетка покрыта оболочкой (плазматическая мембрана, цитолемма, плазмолемма) толщиной 9–10 нм, отделяющей клетку от внеклеточной среды.

Клеточная оболочка поддерживает форму клетки, защищает клетку от механических воздействий и проникновения повреждающих биологических агентов, осуществляет узнавание многих молекулярных сигналов (например, гормонов), регулирует обмен веществ между клеткой и окружающей средой, участвует в обеспечении межклеточных контактов и формировании специфических выпячиваний цитоплазмы (микроворсинки, реснички, жгутики). Реснички и жгутики выполняют функцию движения.

Обмен веществ между клеткой и окружающей ее средой происходит постоянно, но имеет разный механизм – в зависимости от размера транспортируемых частиц. Малые молекулы и ионы переносятся непосредственно через плазматическую мембрану в форме пассивного и активного транспорта, т. е.

без затрат энергии или с помощью специальных белков-переносчиков с затратами энергии. Перенос крупных молекул и частиц осуществляется посредством образования окруженных мембраной пузырьков, в которые и помещаются переносимые частицы.

Поглощение клетками твердых частиц – это фагоцитоз, жидких веществ – пиноцитоз.

Цитоплазма клетки
Цитоплазма представляет собой внутреннее содержимое клетки и состоит из основного вещества – гиалоплазмы – и разнообразных внутриклеточных структур – органелл (органоиды) и включений.

Гиалоплазма – это водный раствор неорганических и органических веществ, находящийся в постоянном движении.

Вода составляет 70–80% цитоплазмы, неорганические вещества – 1–1,5%, органические представлены белками (10–20%), жирами (1–5%), углеводами (0,2–2%) и нуклеиновыми кислотами (1–2%).

Гиалоплазма – это активная среда, в которой протекают химические и физиологические процессы и которая объединяет все компоненты клетки в единую систему. Среди клеточных структур выделяют органеллы общего назначения, имеющиеся во всех клетках, и органеллы специального назначения, которые есть лишь в определенных клетках и выполняют специальную функцию. Включения – это временные клеточные структуры (например, зерна крахмала как запас питательных веществ).

Для эукариотических клеток характерно наличие огромного количества внутриклеточных мембран, которые образуют мембранные органеллы, отличающиеся друг от друга строением и функцией. Эндоплазматическая сеть – это разветвленная система соединенных между собой полостей, трубочек и каналов.

Она играет важную роль в синтезе белков и внутриклеточном транспорте веществ. Аппарат Гольджи представляет собой стопки уплощенных мешочков и цистерн, в которых накапливаются, сортируются и упаковываются синтезированные в клетке вещества. Помимо этого, аппарат Гольджи обеспечивает выведение синтезированных веществ.

Он значительно развит в клетках различных желез. Лизосомы – пузырьки, содержащие около 50 видов ферментов, способных разрушать белки, жиры и углеводы. Лизосомы выполняют функцию внутриклеточного переваривания питательных веществ и чужеродных компонентов, поступающих в клетку.

При участии лизосом происходит очищение клеток от вредных веществ и вирусов, а также поврежденных структур самой клетки.

Митохондрии – веретенообразные структуры, в которых синтезируется аденозинтрифосфорная кислота, используемая в качестве источника энергии при химических процессах внутри клетки. Поэтому митохондрии называют «энергетическими станциями клетки».

Количество, размеры и расположение митохондрий зависят от функции клетки. Например, в одной клетке печени их насчитывается до 2,5 тысяч. Митохондрии (у растений – хлоропласты), в отличие от других органелл, способны к самовоспроизведению и обладают собственным аппаратом биосинтеза белка.

По существующей гипотезе, они являются потомками древних симбиотических бактерий.

В клетках присутствуют также органеллы, не имеющие мембранного строения: рибосомы, микротрубочки, клеточный центр. Рибосомы – многочисленные мелкие образования округлой формы, расположенные в основном на эндоплазматической сети. Их функция – синтез белков и аминокислот. Микротрубочки образуют клеточный скелет и участвуют в транспорте веществ внутри клетки. Клеточный центр обычно находится вблизи ядра и играет важную роль при делении клетки.

Отдельные клетки в процессе эволюции приспособились к выполнению специфических функций, поэтому они содержат особые органеллы специального назначения, например миофибриллы мышечного волокна, обеспечивающие его сокращение, нейрофибриллы и синаптические пузырьки нервных клеток, участвующие в передаче нервного импульса.

Ядро клетки
Ядро – важная структура эукариотических клеток. Большинство клеток имеют одно ядро, но встречаются и многоядерные клетки (мышечные волокна скелетных мышц). Некоторые специализированные клетки (например, эритроциты) утрачивают ядра. Самое крупное ядро – у яйцеклетки (женская половая клетка).

Ядро окружает оболочка, пронизанная многочисленными порами, через которые происходит обмен веществ между ядром и цитоплазмой. Под ядерной оболочкой располагается нуклеоплазма – желеобразный раствор, содержащий белки, ионы, хроматин и ядрышко. В ядрышке образуются рибосомы. Из хроматина перед делением клетки формируются хромосомы.

Хромосомы являются носителями наследственной информации. Число хромосом в клетках каждого биологического вида постоянно. Обычно в клетках тела хромосомы представлены парами (диплоидный набор), а в половых клетках они непарны (гаплоидный набор).

Набор хромосом клеток конкретного вида живых организмов, характеризующийся числом, величиной и формой хромосом, называют кариотипом.

Кариотип человека представлен 46 хромосомами (23 пары): 44 хромосомы одинаковы у особей мужского и женского пола, а 2 хромосомы являются половыми (у женщин имеются 2 одинаковые Х-хромосомы, у мужчин – Х- и Y-хромосомы).

Ядро клетки хранит и реализует генетическую информацию, управляет процессом биосинтеза белка, участвует в распределении наследственной информации между дочерними клетками и, следовательно, играет важную роль в регуляции развития организма и всех процессов его жизнедеятельности.

Клеточные ткани

В многоклеточных организмах клетки образуют ткани. Ткань – это совокупность клеток и внеклеточного вещества, обладающих общностью происхождения, строения и функции. В человеческом организме выделяют 4 основных типа тканей.

Эпителиальная ткань
Эпителиальная ткань покрывает поверхность тела, выстилает полости внутренних органов и тем самым выполняет защитную функцию.

Она активно участвует в обмене веществ организма благодаря хорошо выраженной способности всасывать и выделять вещества. Часть эпителиальных клеток специализируется на выделении секрета и составляет так называемый железистый эпителий, образующий различные железы.

В зависимости от структурных и функциональных свойств различают однослойный и многослойный эпителий.

Соединительная ткань
Соединительная ткань – это кровь и лимфа, хрящевая и костная ткани, жировая ткань, различные виды собственно соединительной ткани. Эта ткань выполняет преимущественно опорную и трофическую функции.

Характерная особенность соединительной ткани – наличие межклеточного вещества, которое продуцируется клетками. Межклеточное вещество имеет различную консистенцию: твердую – у кости, жидкую – у крови и лимфы.

В межклеточном веществе костной ткани откладываются соли кальция.

Мышечная ткань
Мышечная ткань выполняет в организме сократительную функцию. К этой группе относят гладкую мышечную ткань, обеспечивающую сокращение сосудов и перистальтику внутренних органов, поперечнополосатую мышечную ткань, из которой построены скелетные мышцы, и сердечную мышечную ткань. Мышечное сокращение осуществляется при посредстве специальных структур – миофибрилл, расположенных в мышечных клетках.

Нервная ткань
Нервная ткань образует всю нервную систему: головной и спинной мозг, нервы и нервные узлы. Основная функция нервной ткани связана с восприятием, проведением и передачей нервного возбуждения.

Нервная ткань состоит из нейронов и нейроглии.  Нервные клетки образуют нервные центры, в которых происходит обработка нервного возбуждения, а также проводящие пути, связывающие между собой эти центры.

Нейроглия выполняет вспомогательную роль, связанную с питанием нервных клеток и другими функциями.

Ткани образуют органы. Орган – это часть тела, имеющая определенную форму, строение, функции и положение в организме. Каждый орган образован из ткани преимущественно одного типа, например, кость – из костной ткани, мышца – из мышечной, мозг – из нервной ткани. Однако все органы снабжены нервами и сосудами.

Органы, сходные по своему строению, функции и развитию, объединяются в системы органов: костную, мышечную, пищеварительную, дыхательную, мочевую, половую, сердечно-сосудистую, нервную и др. С помощью регуляторных механизмов системы органов тесно связаны между собой и обеспечивают жизнедеятельность целостного человеческого организма.

Если бы все клетки человеческого тела можно было выложить
в один ряд, то длина его составила бы около 15 тысяч км.

Обновление клеток

Большая часть клеток человека постоянно обновляется. Так, продолжительность жизни эритроцитов составляет 120 дней, клеток печени – 480 дней, а клеток кишечного эпителия – всего 3–5 дней. Последние обновляются со скоростью 1 млн клеток в 1 минуту. Наружный слой эпидермиса кожи образован роговыми чешуйками, которые постепенно слущиваются. Этот слой у человека обновляется за 7–11 дней. Нервные клетки и мышечные волокна в течение жизни не обновляются.

Источник: https://www.medweb.ru/encyclopedias/anatomija/article/kletka

Понравилась статья? Поделиться с друзьями:
Школа авторемонта
Сколько бак у гранты

Закрыть